步骤一、确定状态:
确定dp数组及下标含义 dp[i][j]表示word1[:i]的单词与word2[:j]单词之间的最小编辑距离
步骤二、推断状态方程:
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下: if (word1[i - 1] == word2[j - 1]):
不操作
if (word1[i - 1] != word2[j - 1]):
插入操作 删除操作 替换操作
步骤二、推断状态方程:
if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,
dp[i][j] 就应该是 dp[i - 1][j - 1], 即dp[i][j] = dp[i - 1][j - 1];
步骤二、推断状态方程:
if (word1[i - 1] != word2[j - 1])
操作一:word1删除一个元素,那么就是以下标i - 2为结尾的 word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。 即 dp[i][j] = dp[i - 1][j] + 1;
操作二:word2删除一个元素,那么就是以下标i - 1为结尾的 word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。 即 dp[i][j] = dp[i][j - 1] + 1;
步骤二、推断状态方程:
word2添加一个元素,相当于word1删除一个元素 dp数组如下图所示意的:
步骤二、推断状态方程:
if (word1[i - 1] != word2[j - 1])
操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1] 相同,此时不用增加元素,那么以下标i-2为结尾的word1 与 j-2为 结尾的word2的最近编辑距离 加上一个替换元素的操作。
即dp[i][j]=dp[i-1][j-1]+1;
综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
步骤三、规定初始条件:
初始条件:
全局初始化为0,而第一行和第一列需要初始化
步骤四、计算顺序: 从如下四个递推公式:
dp[i][j] = dp[i - 1][j - 1]
dp[i][j] = dp[i - 1][j - 1] + 1
dp[i][j] = dp[i][j - 1] + 1
dp[i][j] = dp[i - 1][j] + 1 可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:
所以在dp矩阵中一定是从左到右从上到下去遍历,dp数组从 [1,1]位置遍历,外层遍历word1, 内层遍历word2。
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
# 异常判断
if len(word2) == 0:
return len(word1)
if len(word1) == 0:
return len(word2)
# 初始化
dp = [[0 for _ in range(len(word2) + 1)] for _ in range(len(word1) + 1)]
for i in range(len(word1) + 1):
dp[i][0] = i
for j in range(len(word2) + 1):
dp[0][j] = j
for i in range(1, len(word1) + 1):
for j in range(1, len(word2) + 1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j-1], dp[i-1][j], dp[i][j-1]) + 1
return dp[-1][-1]