SUM

A square-free integer is an integer which is indivisible by any square number except 11. For example, 6 = 2 \cdot 36=2⋅3 is square-free, but 12 = 2^2 \cdot 312=22⋅3 is not, because 2^222 is a square number. Some integers could be decomposed into product of two square-free integers, there may be more than one decomposition ways. For example, 6 = 1\cdot 6=6 \cdot 1=2\cdot 3=3\cdot 2, n=ab6=1⋅6=6⋅1=2⋅3=3⋅2,n=aband n=ban=ba are considered different if a \not = ba̸=b. f(n)f(n) is the number of decomposition ways that n=abn=ab such that aa and bb are square-free integers. The problem is calculating \sum_{i = 1}^nf(i)∑i=1n​f(i).

Input

The first line contains an integer T(T\le 20)T(T≤20), denoting the number of test cases.

For each test case, there first line has a integer n(n \le 2\cdot 10^7)n(n≤2⋅107).

Output

For each test case, print the answer \sum_{i = 1}^n f(i)∑i=1n​f(i).

Hint

\sum_{i = 1}^8 f(i)=f(1)+ \cdots +f(8)∑i=18​f(i)=f(1)+⋯+f(8)
=1+2+2+1+2+4+2+0=14=1+2+2+1+2+4+2+0=14.

样例输入复制

2
5
8

样例输出复制

8
14

题目来源

ACM-ICPC 2018 南京赛区网络预赛

#include<bits/stdc++.h>

using namespace std;
const int N=20000007;
int vis[N+5],prime[N+5],ans[N+5],f[N+5];
void init()
{
    vis[1]=1;
    f[1]=1;
    int cnt=0;
    for(int i=2;i<=N;i++)
    {
        if(!vis[i])
        {
            prime[++cnt]=i;
            f[i]=2;
        }
        for(int j=1;j<=cnt&&i*prime[j]<N;j++)
        {
            int tmp=i*prime[j];
            vis[tmp]=1;
            if(i%prime[j])
                f[tmp]=f[i]*2;
            else if(i%(prime[j]*prime[j])==0)
                f[tmp]=0;
            else
            {
                f[tmp]=f[tmp/prime[j]/prime[j]];
                break;
            }
        }
    }
    for(int i=1;i<=N;i++)
        ans[i]=ans[i-1]+f[i];
}
int main()
{
    init();
    int t,n;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        printf("%d\n",ans[n]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值