题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3689
题意:n个建筑,m的时间,后n行,ti,si。ti表示建造建筑需要的时间,si表示建造这个建筑的能得到(si*m)的权,每建造完这个建筑,m会减去ti。问能获得的最大权是多少(当m<ti时不能建造当前建筑)
思路:两个建筑A,B。A先能获得的权值为:m*A.s+(m-A.t)*B.s,B先能获得的权值为:m*B.s+(m-B.t)*A.s 相减得:B.t*A.s-A.t*B.s>0 。也就是说,如果A要在B前面的话,必须有:A.s*B.t>A.t*B.s。排个序。
因为有m<ti的情况,所以加个dp。
#include<algorithm>
#include<string.h>
#include<stdio.h>
using namespace std;
int n,m;
struct node
{
int x,y;
int operator < (const node &a)const
{
return y*a.x>a.y*x;
}
}A[3010];
int dp[11010];
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=1;i<=n;i++)
scanf("%d%d",&A[i].x,&A[i].y);
sort(A+1,A+n+1);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
for(int j=m;j>=0;j--)
{
if(dp[j]||j==0) dp[j+A[i].x]=max(dp[j+A[i].x],dp[j]+A[i].y*(m-j));
}
}
int ans=0;
for(int i=1;i<=m;i++)
ans=max(ans,dp[i]);
printf("%d\n",ans);
}
}