Python学习-Scipy库一维数据表Series(创建、索引、修改、删除)

20 篇文章 6 订阅

Python学习-Scipy库一维数据表Series

目录

1、创建Series Series()函数
2、Series数据的索引
3、Series数据的修改
4、Series数据的删除
导入库
import numpy as np
import pandas as pd

Series可以存储带索引的一维数据记录,下面介绍Series的创建、索引、修改、删除

1、创建Series Series()函数

参数介绍:
data: 存放数据的集合对象,可以使迭代对象、字典(Python3.6以上)、常量
index: 指定的集合对象或自动产生的正整数序数
dtype: 指定Series数据产生时的类型,包括字符串、整数、浮点数、布尔等
name: 指定索引名称
copy: 指定是否对data进行复制

建立Series对象

s1 = pd.Series(data=np.array([10, 20, 30, 40, 50]))
print('s1:\n', s1)
print('s1的索引值:', s1.index)
print('s1的所有元素:', s1.values)

输出

s1:
 0    10
1    20
2    30
3    40
4    50
dtype: int32
s1的索引值: RangeIndex(start=0, stop=5, step=1)
s1的所有元素: [10 20 30 40 50]

指定索引

s2 = pd.Series(data=np.arange(3), index={'one', 'two', 'three'})
print('s2\n', s2)

输出

s2
 three    0
two      1
one      2
dtype: int32

用字典建立Series对象

s3 = pd.Series({'Tom': 16, 'Tony': 18, 'Alice': 19})
print('s3:\n', s3)

输出

s3:
 Tom      16
Tony     18
Alice    19
dtype: int64

建立Series对象时,改变数据类型,并指定索引名称

s4 = pd.Series(data=np.ones(3), dtype=bool, name='No')
print('s4:\n', s4)

输出

s4:
 0    True
1    True
2    True
Name: No, dtype: bool
2、Series数据的索引

默认数值索引查询

s5 = pd.Series(np.arange(100, 110))
print('s5:\n', s5)
print('s5[0]: ', s5[0])
print('s5[:4]:\n', s5[:4])

输出

s5:
 0    100
1    101
2    102
3    103
4    104
5    105
6    106
7    107
8    108
9    109
dtype: int32
s5[0]:  100
s5[:4]:
 0    100
1    101
2    102
3    103
dtype: int32

指定索引值查询

s6 = pd.Series([10, 20, 30, 40], index={'Tom', 'Tony', 'Alice', 'Mike'})
print("s6['Tony']: ", s6['Tony'])

输出

s6['Tony']:  20

指定数值索引查询

animal = pd.Series(['Lion', 'Wolf', 'Bear'], index=[2, 0, 1])
print('animal[0]: ', animal[0])

输出

animal[0]:  Wolf

布尔运算方式索引

s7 = pd.Series(np.arange(100, 110))
print('s7[s7>105]:\n', s7[s7 > 105])

输出

s7[s7>105]:
 6    106
7    107
8    108
9    109
dtype: int32

利用numpy数组提供索引

animal = pd.Series(['Lion', 'Wolf', 'Bear'], index=[2, 0, 1])
ind = np.array([0, 1])
print('animal[ind]:\n', animal[ind])

输出

animal[ind]:
 0    Wolf
1    Bear
dtype: object
3、Series数据的修改

直接赋值

s8 = pd.Series([10, 9, 8, 7, 6, 5])

s8[1] = 2
print('s8:\n', s8)

输出

s8:
 0    10
1     2
2     8
3     7
4     6
5     5
dtype: int64

replace()方法

s8.replace(8, 4, inplace=True)
print('s8:\n', s8)

输出

s8:
 0    10
1     2
2     4
3     7
4     6
5     5
dtype: int64
4、Series数据的删除

用pop(x),x为索引值

s9 = pd.Series([10, 9, 8, 7, 6, 5])
s9.pop(3)
print('s9:\n', s9)

输出

s9:
 0    10
1     9
2     8
4     6
5     5
dtype: int64

用del()函数删除

s10 = pd.Series([10, 9, 8, 7, 6, 5])
del(s10[1])
print('s10:\n', s10)

输出

s10:
 0    10
2     8
3     7
4     6
5     5
dtype: int64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值