目录
1、决策树
1.决策树与随机森林都属于机器学习中监督学习的范畴,主要用于分类问题。
决策树算法有这几种:ID3、C4.5、CART,基于决策树的算法有bagging、随机森林、GBDT等。
决策树是一种利用树形结构进行决策的算法,对于样本数据根据已知条件或叫特征进行分叉,最终建立一棵树,树的叶子结节标识最终决策。新来的数据便可以根据这棵树进行判断。随机森林是一种通过多棵决策树进行优化决策的算法。
2.随机森林
2.1 随机森林简介
上述已经提到,随机森林的基本思想为: 生成n棵决策树,然后这n棵决策树进行投票或者平均得出最终结果。而每棵树生成的方式为随机选取样本、随机地选择特征。下面为随机森林的算法:
2.2 随机森林优缺点
优点:
具有极高的准确率
随机性的引入,使得随机森林不容易过拟合
随机性的引入,使得随机森林有很好的抗噪声能力
能处理很高维度的数据,并且不用做特征选择
既能处理离散型数据,也能处理连续型数据,数据集无需规范化
训练速度快,可以得到变量重要性排序
容易实现并行化
缺点:
当随机森林中的决策树个数很多时,训练时需要的空间和时间会较大
随机森林模型还有许多不好解释的地方,有点算个黑盒模型
3.sklearn中随机森林参数简介
4. 随机森林应用场景
数据维度相对低(几十维),同时对准确性有较高要求时。因为不需要很多参数调整就可以达到不错的效果,基本上不知道用什么方法的时候都可以先试一下随机森林。
5、随机森林源码
# -*- coding: utf-8 -*-
import numpy as np
from decision_tree_model import ClassificationTree
from sklearn import datasets
from sklearn.model_selection import train_test_split
class RandomForest():
"""Random Forest classifier. Uses a collection of classification trees that
trains on random subsets of the data using a random subsets of the features.
Parameters:
-----------
n_estimators: int
树的数量
The number of classification trees that are used.
max_features: int
每棵树选用数据集中的最大的特征数
The maximum number of features that the classification trees are allowed to
use.
min_samples_split: int
每棵树中最小的分割数,比如 min_samples_split = 2表示树切到还剩下两个数据集时就停止
The minimum number of samples needed to make a split when building a tree.
min_gain: float
每棵树切到小于min_gain后停止
The minimum impurity required to split the tree further.
max_depth: int
每棵树的最大层数
The maximum depth of a tree.
"""
def __init__(self, n_estimators=100, min_samples_split=2, min_gain=0,
max_depth=float("inf"), max_features=None):
self.n_estimators = n_estimators #树的数量
self.min_samples_split = min_samples_split #每棵树中最小的分割数,比如 min_samples_split = 2表示树切到还剩下两个数据集时就停止
self.min_gain = min_gain #每棵树切到小于min_gain后停止
self.max_depth = max_depth #每棵树的最大层数
self.max_features = max_features #每棵树选用数据集中的最大的特征数
self.trees = []
# 建立森林(bulid forest)
for _ in range(self.n_estimators):
tree = ClassificationTree(min_samples_split=self.min_samples_split, min_impurity=self.min_gain,
max_depth=self.max_depth)
self.trees.append(tree)
def fit(self, X, Y):
# 训练,每棵树使用随机的数据集(bootstrap)和随机的特征
# every tree use random data set(bootstrap) and random feature
sub_sets = self.get_bootstrap_data(X, Y)
n_features = X.shape[1]
if self.max_features == None:
self.max_features = int(np.sqrt(n_features))
for i in range(self.n_estimators):
# 生成随机的特征
# get random feature
sub_X, sub_Y = sub_sets[i]
idx = np.random.choice(n_features, self.max_features, replace=True)
sub_X = sub_X[:, idx]
self.trees[i].fit(sub_X, sub_Y)
self.trees[i].feature_indices= idx
print("tree", i, "fit complete")
def predict(self, X):
y_preds = []
for i in range(self.n_estimators):
idx = self.trees[i].feature_indices
sub_X = X[:, idx]
y_pre = self.trees[i].predict(sub_X)
y_preds.append(y_pre)
y_preds = np.array(y_preds).T
y_pred = []
for y_p in y_preds:
# np.bincount()可以统计每个索引出现的次数
# np.argmax()可以返回数组中最大值的索引
# cheak np.bincount() and np.argmax() in numpy Docs
y_pred.append(np.bincount(y_p.astype('int')).argmax())
return y_pred
def get_bootstrap_data(self, X, Y):
# 通过bootstrap的方式获得n_estimators组数据
# get int(n_estimators) datas by bootstrap
m = X.shape[0] #行数
Y = Y.reshape(m, 1)
# 合并X和Y,方便bootstrap (conbine X and Y)
X_Y = np.hstack((X, Y)) #np.vstack():在竖直方向上堆叠/np.hstack():在水平方向上平铺
np.random.shuffle(X_Y) #随机打乱
data_sets = []
for _ in range(self.n_estimators):
idm = np.random.choice(m, m, replace=True) #在range(m)中,有重复的选取 m个数字
bootstrap_X_Y = X_Y[idm, :]
bootstrap_X = bootstrap_X_Y[:, :-1]
bootstrap_Y = bootstrap_X_Y[:, -1:]
data_sets.append([bootstrap_X, bootstrap_Y])
return data_sets
if __name__ == '__main__':
data = datasets.load_digits()
X = data.data
y = data.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=2)
print("X_train.shape:", X_train.shape)
print("Y_train.shape:", y_train.shape)
clf = RandomForest(n_estimators=100)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('y_test:{}\ty_pred:{}'.format(y_test, y_pred))
print("Accuracy:", accuracy)