自动驾驶数据生产是一个复杂的过程,涉及多个环节。以下是对自动驾驶数据生产全流程系统的介绍。
首先,数据采集是起点。可以通过多种方式进行,如自动驾驶采集车在确定采集区域和测试场景后,启动自动驾驶模式,由搭载多种传感器(如激光雷达、相机、毫米波雷达等)的车辆沿着预设路线行驶收集数据,采集到的数据包括地图信息、行驶速度、坐标、姿态、物体识别和距离测量等,并实时存储到车载计算机或云端存储设备中。此外,还可以通过道路采集车、量产车、车主数据贡献等方式采集数据。例如,特斯拉通过影子模式获取驾驶数据,车辆在行驶过程中传感器持续对决策算法进行验证,一旦系统算法与驾驶员行为不一致的场景被判定为“极端工况”,便触发数据回传。
接着是数据传输环节。此过程要确保传输高效、数据安全和完整。涉及数据压缩、数据加密、网络优化等技术。例如,为减少传输的数据量会使用压缩算法;数据加密采用对称加密(如 AES)和非对称加密(如 RSA)保障数据安全;5G 网络技术以其高带宽、低延迟的特点成为数据传输的理想选择,网络切片技术可用于为自动驾驶数据传输提供专用网络通道。
数据存储也至关重要。自动驾驶车辆生成的数据量巨大,存储系统需要具备高扩展性和高可靠性。云储存的分布式存储架构和对象存储技术具备大容量、高可靠性、高性能、高伸缩性、低成本等优势。如华为云联合运营商打造分布式车联网方案,通过“M”个分布式节点和“N”个车用数据接入点,实现数据快速、高效上云。
数据预处理包括数据清洗、自动标注等步骤。少量帧可通过人工精细标注,大部分采用机器标注简化标注,为数据集添加真值信息。标注人员和计算机协作进行更加精确的数据标注,人工标注人员擅长语义信息,计算机擅长几何、重建、三角化、跟踪等。
然后是模型训练环节。向模型输入传感器获取的原始数