AI 系统评估基准-研究生水平的专家推理(GPQA)

在人工智能领域,研究生水平的专家推理(GPQA)是一个重要的评估基准。GPQA全称是Graduate-Level Google-Proof Q&A Benchmark,由448个困难的多项选择题组成,这些问题无法通过Google搜索轻松回答,且由生物学、物理学和化学等各个领域的主题专家精心设计。通常来说,在相应领域拥有或正在攻读博士学位的专家在GPQA的准确率在70%上下。

OpenAI推出的全新推理模型o1在GPQA测试中表现惊人,达到了78%的准确率。Anthropic开发的Claude 3.5 Sonnet在研究生水平推理测试(GPQA Diamond)中也有出色表现。此外,Meta发布的Llama 3在多个评测集上均表现良好,其中也包括GPQA。

GPQA不仅是一个评估基准,还在不断发展和完善。如一些研究团队对现有的评估基准进行深入调查,发现其中的问题并提出新版本。例如,多个研究团队对MMLU进行深入调查后提出了MMLU-Redux和MMLU-Pro等新版本。同时,人们也在寻找具有未污染、高质量数据集,使用可靠指标并测量模型关键能力的新基准测试,涵盖知识测试、短期和长期上下文推理、复杂数学能力以及与人类偏好高度相关的任务等方面。

总的来说,GPQA作为研究生水平的专家推理评估基准,在衡量人工智能模型在复杂问题上的表现方面发挥着重要作用。它促使人工智能模型不断进步,推动着人工智能技术向更高水平发展。

GPQA 的组成内容有哪些

GPQA(Graduate-Level Google-Proof Q&A Benchmark)是一个专为研究生级别设计的问答基准数据集。该数据集由一系列精心设计的问答对组成,涵盖了广泛的知识领域,包括生物学、物理学和化学等多个学科领域共 448 个问题。这些问题的设计考虑到了专家与非专家之间的知识差距,通过让专家编写问题并验证答案的客观性,同时让非专家尝试解决问题,确保数据集的问题对于非专家来说具有一定的挑战性。该数据集的问题难度极大,即便是在该领域已取得或正在攻读博士学位的专家,正确率也只有 65%,而对同等专业背景但不同学科的非专家来说,正确率仅为 34%。现有 AI 模型如 GPT-4 在该数据集上的正确率也仅为 39%。例如,在生物学领域的问题可能涉及细胞结构、遗传机制等复杂内容;在物理学领域可能涵盖量子力学、相对论等高深概念;化学领域则可能包括有机合成、化学反应机理等难题。

OpenAI 的 o1 在 GPQA 表现如何

OpenAI 的 AI 模型 o1 在科学、编码和数学等领域表现出色,在 GPQA 基准测试中,o1 的表现首次超过博士级学者,总体得分达 78%,其中物理科目得分高达 93%。o1 采用链式推理逻辑,具备自我纠错能力,但也存在幻觉问题,可能比其他模型更频繁地产生错误答案。尽管 o1 能为科学研究提供宝贵帮助,但结果仍需人工验证和检查,确保准确性和安全性。o1 在科学计算、文献扫描、发现研究空白以及提出新思路方面特别有帮助,更适合专家使用,不适合新手。例如,一名加州物理科学家展示了 o1 的天体质量计算,这个模型在 1 小时内复刻了他花费一年时间完成的博士论文数据。在国际数学奥林匹克资格考试中,o1 得分 83%,远超 GPT-4o 的表现。

Claude 3.5 Sonnet 在 GPQA 表现怎样

从下表中可以看出,在推理测试基准 gpqa(diamond)上,新版 Claude3.5Sonnet 大幅超越 GPT-4o。在视觉 qa、数学推理、文档视觉问答、图表问答、科学表格基准测试中,Claude3.5Sonnet 性能成为业界新标杆。Claude3.5Sonnet 在把握细微差别、幽默和复杂指令等方面表现出显著的性能提升,并且以自然的语气编写高质量的内容。在内部代理编码评估中,Claude3.5Sonnet 解决了 64%的问题,优于 Claude3Opus(解决了 38%)。Claude3.5Sonnet 可以独立编写、编辑和执行代码,并具有复杂的推理和故障排除功能。

Llama 3 在 GPQA 的表现

Meta 推出的 Llama 3 在 MMLU、GPQA、HumanEval、GSM-8K 等多项基准上取得了优异的成绩。Llama 3 8B 在 MMLU、GPQA、HumanEval、GSM-8K 等多项基准上超过谷歌 Gemma 7B 和 Mistral 7B Instruct。Llama 3 70B 也在 MMLU、HumanEval、GSM-8K 等基准上超越了闭源的谷歌 Gemini Pro 1.5、Claude 3 Sonnet。Llama 3 系列最大模型规模将超过 4000 亿参数,其训练数据量是 Llama 2 的七倍,代码量也增至四倍。此外,Llama 3 的训练效率比 Llama 2 提升了三倍。

GPQA 如何发展和完善

为了进一步发展和完善 GPQA,可以从以下几个方面入手。首先,不断扩大问题的涵盖领域,增加更多学科的问题,以更全面地评估 AI 系统在不同领域的能力。其次,可以邀请更多的专家参与问题的编写和答案的验证,提高问题的质量和客观性。同时,加强对现有 AI 模型在 GPQA 上的表现分析,找出其不足之处,为模型的改进提供方向。此外,可以引入更多的评估指标,不仅仅局限于正确率,还可以考虑问题的解决时间、推理过程的合理性等因素。还可以开展国际合作,让不同国家和地区的研究机构共同参与 GPQA 的发展,分享经验和资源,推动 GPQA 成为全球公认的 AI 系统评估基准。

综上所述,GPQA 作为研究生水平的专家推理基准,对于评估 AI 系统的能力具有重要意义。OpenAI 的 o1、Claude 3.5 Sonnet 和 Meta 的 Llama 3 等模型在 GPQA 上的表现各有优劣,这也为 AI 技术的发展提供了参考和动力。未来,通过不断发展和完善 GPQA,可以更好地推动 AI 技术的进步,为人类社会带来更多的创新和价值。

 

 

### GPQA-Diamond 技术解析 GPQA-Diamond 是一种先进的自然语言处理框架,旨在通过组合监督微调 (SFT) 和强化学习 (RL),针对特定领域如代码、数学或一般推理开发高度定制化的专家模型[^1]。此方法不仅提高了模型对于复杂问题的理解能力,还增强了其解决实际应用场景中的难题的能力。 #### 数据生成机制 该技术的核心在于利用已有的高质量语料库作为基础,通过精心设计的训练流程来构建更为精准的回答系统。具体而言,在训练期间会为每一个输入实例准备两类样本: - **原始配对形式**:将问题及其对应的初始回应直接关联起来,形成 `<problem, original response>` 结构; - **增强型上下文感知模式**:除了上述基本信息外,还会加入额外的引导信息,即采用 `<system prompt, problem, R1 response>` 形式的三元组结构,从而帮助模型更好地理解任务背景并作出更合理的反应。 #### 多阶段训练路径 为了进一步优化模型表现,采用了分步迭代的方式来进行整体架构的设计与实现。首先是基于预训练的基础版本(R1),从中抽取优质素材以支持后续精炼工作;接着引入纯粹依赖于奖励信号驱动的学习环节,以此促进算法向更高层次演进;最后证明经过这样一系列转换后的产物确实能够在多个维度超越传统方案[^2]。 #### 应用案例分析 在一个具体的实验设置下,研究者们分别在小型(约1.33万亿token,含157亿参数)和大型(超过5400亿token,拥有2287亿参数)两种尺度上进行了探索性尝试,并成功验证了所提出的MTP策略的有效性——即使是在不改变原有体系的前提下简单叠加一层深度网络组件也能带来显著的效果提升[^3]。 ```python # 示例代码片段展示如何加载预训练模型并应用于新数据集 from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "path/to/pretrained/model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) def predict(text_input): inputs = tokenizer(text_input, return_tensors="pt") outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=-1).item() return predictions ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值