得物的AI在线鉴定主要通过以下方式实现:
-
图像识别与多角度拍摄:用户上传商品的多张照片,系统通过高清镜头对商品进行360度全方位拍摄,捕捉商品的纹理、Logo几何形状、工艺等细节特征。这些照片会被输入到AI系统中进行分析。
-
AI计算引擎与大数据支持:得物的AI鉴别系统基于多年积累的查验鉴别研究和海量实物商品数据训练而成。该系统整合了数十亿级查验鉴别数据样本和庞大的实物商品数据库,利用细粒度感知、分层注意力机制、神经网络结构搜索等技术,快速分析商品的关键物理特性。
-
正品样本库对比:得物建立了覆盖13个消费品类、1500多个品牌、10万多种商品的正品样本库。AI系统将用户上传的商品图片与样本库中的数据进行对比,从而判断商品的真伪。
-
自动迭代与模型优化:AI系统通过不断判断陌生照片的真假,校正和优化模型,实现自动迭代。这一过程需要长达6个月甚至更长时间,以确保鉴别结果的准确性。
-
人工与AI结合:尽管AI鉴别系统的准确率极高(99.9999%以上),但得物也保留了人工鉴别师的参与,以应对复杂鉴别任务或特殊情况。AI辅助鉴别师进行多重交叉鉴别,进一步提升鉴定的可靠性。
-
快速生成鉴别报告:在用户上传商品图片后,系统会在几秒内生成详细的鉴别报告,告知商品的真伪情况。
得物的AI在线鉴定通过结合先进的图像识别技术、庞大的数据样本库以及人工与AI的协同工作,实现了高效、精准的商品真伪鉴别,为消费者提供了可靠的购物保障。
得物AI在线鉴定系统中使用的细粒度感知技术主要通过以下方式工作:
-
图像特征提取:系统首先从用户上传的商品图像中提取关键特征,包括纹理、Logo几何形状、工艺等细节。这些特征是通过细粒度感知技术实现的,该技术能够捕捉到商品图像中的像素级细微差异。
-
分层注意力机制:系统利用分层注意力机制来增强对图像中重要特征的关注。这种机制可以帮助系统更准确地识别和分析商品的关键部位,从而提高鉴别准确率。
-
神经网络结构搜索:通过神经网络结构搜索技术,系统能够自动优化和调整其内部结构,以更好地适应不同的商品类型和特征。这种自适应能力使得系统能够不断进化,提升鉴别效率