戴密斯·哈萨比斯是今年诺贝尔化学奖得主、谷歌 DeepMind创始人,还是神经学家、国际象棋大师和游戏设计师

戴密斯·哈萨比斯是今年诺贝尔化学奖得主、谷歌 DeepMind创始人,还是神经学家、国际象棋大师和游戏设计师,被蒂姆·伯纳斯·李称为“地球上最聪明的人之一”。他于 1976 年出生在伦敦北部的普通家庭,父母分别来自塞浦路斯和新加坡,家中经营玩具店。 哈萨比斯从小展现出天才特质,多次担任英国青少年国际象棋队队长,在14 岁以下国际象棋选手中排名全球第二,并且擅长各类智力游戏,在 1998 年伦敦智力奥运会五项全能赛夺冠,后续五年内四次夺冠。他 16岁提前完成高中课程,因年龄小被剑桥大学要求休学一年,期间在游戏公司工作攒够学费,后以计算机科学专业第一名成绩毕业。他先是创办游戏工作室,在市场形势不佳后,受科幻电影启发,卖掉工作室重返学术圈,于 2005年到伦敦大学学院攻读认知神经科学博士,其研究成果入选《Science》年度十大科学突破。2009 年博士毕业后,他于 2010 年创立DeepMind,目标是打造通用人工智能,尽管当时此目标遭学术界质疑,但仍吸引了部分投资者,如比德蒂尔在种子轮融资中投入大笔资金。他聘请深度学习三巨头中的辛顿和杨利坤担任技术顾问,还获得马斯克投资,并被引荐给谷歌创始人拉里·佩奇。在人工智能军备竞赛中,谷歌和 Facebook 都想收购 DeepMind,谷歌出价 6.5 亿美元,Facebook 出价更高,但DeepMind卖身的关键条件是设立独立道德委员会监督通用人工智能技术使用,扎克伯格不接受此条件,最终哈萨比斯选择谷歌。前不久获诺贝尔物理学奖的杰弗里·辛顿评价哈萨比斯聪明、好胜且擅长社交,截至目前,他在人工智能领域的发展未让众人失望。

戴密斯·哈萨比斯(Demis Hassabis)是一位多才多艺的科学家和企业家,他的成就涵盖了多个领域。他是2024年诺贝尔化学奖的得主之一,与约翰·M·霍普金斯和大卫·贝克共同获奖,以表彰他在蛋白质结构预测方面的贡献。

哈萨比斯出生于1976年,成长于伦敦北部的一个普通家庭,父母分别来自塞浦路斯和新加坡。他从小就展现出非凡的智力和对国际象棋的热爱,13岁时成为国际象棋大师,并在14岁以下选手中排名全球第二。此外,他还是一位游戏设计师,曾设计经典游戏《主题公园》(Theme Park)。

哈萨比斯在剑桥大学完成了计算机科学专业,并以优异的成绩毕业。之后,他创立了游戏公司Elixir Studios,并在2005年进入伦敦大学学院攻读认知神经科学博士学位。2010年,他与同事共同创立了DeepMind,目标是开发通用人工智能(AGI)。尽管当时这一目标受到学术界的质疑,但DeepMind最终吸引了谷歌的注意,并于2014年被谷歌以6.5亿美元收购。

哈萨比斯的研究成果不仅限于人工智能领域,他还因其在蛋白质结构预测方面的贡献而获得了诺贝尔化学奖。他的工作推动了AlphaFold等工具的发展,这些工具在生物医学领域具有重要应用前景。

哈萨比斯是一位杰出的科学家、企业家和国际象棋大师,他的成就跨越了多个学科领域,为人工智能和科学研究做出了巨大贡献。他被蒂姆·伯纳斯·李称为“地球上最聪明的人之一”,这一评价反映了他在科学界的高度认可。

戴密斯·哈萨比斯在蛋白质结构预测方面的具体贡献主要体现在他与约翰·M·詹伯和大卫·贝克共同开发的AlphaFold AI工具上。这一工具能够准确预测几乎所有已知蛋白质的三维结构,解决了生物学中长达50年的蛋白质折叠问题。

AlphaFold自2018年向科研人员开放以来,已被用于预测近2亿种蛋白质的结构,全球超过200万人使用该工具。这一技术不仅在蛋白质研究领域取得了重大进展,还助力抗击抗生素抗性和开发分解塑料的酶,对人类健康和福祉有深远影响。

此外,哈萨比斯作为DeepMind的联合创始人,他的工作不仅限于蛋白质结构预测,还包括在人工智能领域的其他突破性研究,如AlphaGo等。

戴密斯·哈萨比斯创立的DeepMind在人工智能领域的主要成就是什么?

戴密斯·哈萨比斯创立的DeepMind在人工智能领域的主要成就包括:

  1. 开发AlphaGo:DeepMind最著名的成就之一是开发了AlphaGo,这是一款能够自学并掌握复杂任务的软件。AlphaGo在2016年击败了世界顶级围棋选手李世石,这一成就震惊了全球,并展示了人工智能在解决复杂问题上的潜力。

  2. AlphaFold:DeepMind还研发了AlphaFold,这是一个用于蛋白质结构预测的工具。AlphaFold在医学研究领域取得了重大突破,极大地推动了生物科学的发展。

  3. 围棋、国际象棋和将棋领域的领先地位:DeepMind在围棋、国际象棋和将棋等领域取得了显著进展,AlphaZero在这些领域均取得了领先地位,并且在多项基准测试中大幅领先于其他模型。

  4. 谷歌大脑和DeepMind AI实验室的合并:2023年,谷歌大脑和DeepMind AI实验室合并,哈萨比斯成为谷歌AI部门的领导者,进一步推动了人工智能技术的发展。

  5. 获得多个奖项和认可:DeepMind及其创始人哈萨比斯获得了多项重要奖项和认可,包括《科学》杂志的“年度突破奖”、英国皇家学会的穆勒奖章以及《自然》杂志的年度人物等荣誉。

戴密斯·哈萨比斯如何将他的国际象棋技能应用于人工智能研究?

根据提供的信息,无法回答问题“戴密斯·哈萨比斯如何将他的国际象棋技能应用于人工智能研究”。虽然哈萨比斯在国际象棋领域取得了卓越成就,并且他的国际象棋技能对他的职业生涯有重要影响,但没有具体证据表明他如何将这些技能直接应用于人工智能研究。大部分证据都集中在他在围棋和AlphaGo方面的成就,以及他在其他领域的贡献,如蛋白质折叠预测和神经科学。

戴密斯·哈萨比斯获得诺贝尔化学奖的详细原因和影响是什么?

戴密斯·哈萨比斯获得诺贝尔化学奖的原因和影响主要集中在他在蛋白质结构预测领域的突破性贡献。具体来说,哈萨比斯与约翰·朱默帕共同开发了AlphaFold,这是一种基于人工智能的工具,能够高效地预测蛋白质的三维结构。

获奖原因

  1. 蛋白质结构预测的突破:蛋白质是生命科学中的核心工具,控制着所有化学和生物反应。然而,预测蛋白质的复杂三维结构一直是一个长期未解决的问题。哈萨比斯和朱默帕通过开发AlphaFold,成功解决了这一难题,极大地推动了药物设计、疾病治疗和生物过程理解。

  2. 人工智能在生物学中的应用:AlphaFold的成功展示了人工智能在解决生物学问题中的巨大潜力。它不仅提高了蛋白质结构预测的准确性和效率,还为新药研发和疾病治疗提供了新的工具和方法。

影响

  1. 科学研究的革新:AlphaFold的开源和应用使得全球科研人员能够更高效地进行蛋白质结构研究,节省了大量的时间和资源。这不仅加速了基础科学研究,还促进了新药的开发和疾病治疗方案的改进。

  2. 药物研发的加速:AlphaFold的应用使得药物研发过程更加高效和精准。通过快速预测蛋白质结构,研究人员可以更快地设计出有效的药物分子,从而加速新药的上市。

  3. 生物医学领域的广泛影响:AlphaFold的应用不仅限于药物研发,还涉及疾病诊断、疫苗开发等多个领域。它为应对公共卫生挑战提供了新的工具和方法。

  4. 跨学科合作的典范:哈萨比斯和朱默帕的研究展示了跨学科合作的巨大潜力。他们的工作将计算机科学、生物学和医学紧密结合在一起,开创了新的研究方向和应用领域。

戴密斯·哈萨比斯在认知神经科学领域的研究成果有哪些?

戴密斯·哈萨比斯在认知神经科学领域的研究成果主要集中在大脑的记忆和学习机制,特别是海马体在空间导航和记忆形成中的作用。他在伦敦大学学院攻读认知神经科学博士学位期间,发表了关于记忆和想象的著名研究,这篇论文被引用了1000多次,并且揭示了健忘症患者很难想象未来事件的现象。

此外,哈萨比斯还开发了一种新的情景记忆系统理论,这是记忆回忆和关键过程的重要组成部分。他的这项研究被《科学》年度十大科学突破之一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值