Deepseek针对某个具体模块(如动态阈值调整的实现细节)或实际业务场景(如金融风控中的不均衡处理)展开更深入的技术探讨?

以下是针对金融风控场景的样本不均衡问题解决方案,包含数据处理、模型优化、部署监控全流程技术细节,以及可直接落地的代码示例:


一、金融风控数据特性与挑战

特性 挑战 解决方案方向
极低正样本比例(0.1%~1%) 模型易忽视欺诈模式 分层增强+半监督学习
高维度稀疏特征 传统过采样方法失效(如SMOTE) 特征压缩+GAN合成
时序依赖性强 简单随机采样破坏序列模式 时间窗口保留+状态增强
对抗性演化 欺诈手段快速变化导致模型失效 在线学习+对抗训练
强监管要求 需要可解释的模型决策 SHAP分析+规则引擎融合

二、全流程解决方案

1. 数据预处理与增强
import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder
import ctgan

# 1.1 混合编码处理高维类别特征
preprocessor = ColumnTransformer(
    transformers=[
        ('num', 'passthrough', ['amount', 'hour']),
        ('cat', OneHotEncoder(handle_unknown='ignore'), ['merchant_type', 'device_os'])
    ])

# 1.2 使用CTGAN合成少数类样本
synth = ctgan.CTGANSynthesizer(epochs=100)
synth.fit(fraud_data, discrete_columns=['merchant_type', 'is_fraud'])  # fraud_data为欺诈样本
synthetic_fraud = synth.sample(5000)  # 生成5000条合成欺诈样本

# 1.3 时间序列特征增强
def create_temporal_features(df):
    # 添加时间窗口统计量
    df['1h_avg_amount'] = df.groupby('user_id')['amount'].transform(lambda x: x.rolling('1h').mean())
    df['24h_freq'] = df.groupby('user_id')['timestamp'].transform(lambda x: x.diff().dt.total_seconds().lt(3600*24).sum())
    return df
2. 混合模型架构(LightGBM + NN)
import lightgbm as lgb
import tensorflow as tf
from sklearn.model_selection import train_test_split

# 2.1 LightGBM处理结构化特征
lgb_params = {
   
   
    'objective': 'binary',
    'metric': 'auc',
    'scale_pos_weight': 100,  # 正样本权重=负样本数/正样本数
    'num_leaves': 31,
    'feature_fraction': 0.8
}

lgb_train = lgb.Dataset(X_train, y_train)
gbm = lgb.train(lgb_params, lgb_train)

# 2.2 神经网络处理时序序列
tf_model = tf.keras.Sequential([
    tf.keras.layers.LSTM(64, input_shape=(24, 10)),  # 24小时时间步
    tf.keras.layers.Dense(1, activation=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值