DeepSeek研发的精算大模型「精卫」基本信息
- 模型名称:DeepSeek-V3
- 参数规模:6710亿参数,但实际运行时激活370亿参数。
- 架构:采用Mixture-of-Experts(MoE)架构,每个token激活370亿参数。
- 训练数据:基于14.8T高质量token预训练。
- 训练成本:总训练成本为557.6万美元,远低于GPT-4的预算。
- 性能:在数学、代码、自然语言推理等任务上表现优异,接近OpenAI GPT-4o和Claude-3.5 Sonnet等顶尖模型。
- 技术特点:
- FP8混合精度训练:提高训练效率和推理性能。
- 多头注意力机制(MLA) :增强模型的注意力机制。
- 多Token预测(MTP) :提升推理速度和模型性能。
- 负载均衡策略:通过无辅助损失的负载均衡策略和多Token预测目标(MTP)提升推理性能。
- 开源与部署:完全开源,提供多种部署方案,包括华为昇腾NPU、DeepSeek-Infer Demo、SAGL、Llama2、TensorRT-LLM等。
- 应用场景:广泛应用于自然语言处理、代码生成、数学解题、多模态理解等领域。
综上所述,DeepSeek-V3凭借其高性能、低成本和创新技术,成为国内外AI领域的标杆模型。
精卫模型覆盖的精算任务类型及98%覆盖率依据
- 精卫模型覆盖的精算任务类型:
- 精卫模型主要用于数据库同步服务,涉及广播表、异构索引、数据导入、平滑扩容、拆分变更等任务。
- 精卫平台还支持ETL模型设计与集成用户专业调度管理的分布式ETL建模运维系统,包括模型、平台、任务、定时调度、日志、节点、用户等模块。
- 98%覆盖率依据:
- 覆盖率采用绝对指标来评价,出题方保证所有case的覆盖率一定能够做到最高覆盖率98%。
- 覆盖率的计算公式为:覆盖率 = (Object 执行数 / 总对象数) * 100%。
- 在实际应用中,覆盖率达到或高于98%可以得到满分30分。
综上所述,精卫模型覆盖的精算任务类型包括数据库同步服务和ETL模型设计与集成,而98%覆盖率是通过确保所有case的执行数达到总对象数的98%来实现的。
中国人寿采用精卫模型的具体应用场景
- 高级风险评估:中国人寿使用复杂的概率模型来评估人寿保险的长期风险,例如马尔可夫链模型用于预测寿险保单的未来现金流和责任。这种高级风险评估模