DeepSeek研发的精算大模型「精卫」已实现98%精算任务覆盖,中国人寿采用后年节约3.2亿元技术采购成本,形成关键技术替代效应

DeepSeek研发的精算大模型「精卫」基本信息

  1. 模型名称​:DeepSeek-V3
  2. 参数规模​:6710亿参数,但实际运行时激活370亿参数。
  3. 架构​:采用Mixture-of-Experts(MoE)架构,每个token激活370亿参数。
  4. 训练数据​:基于14.8T高质量token预训练。
  5. 训练成本​:总训练成本为557.6万美元,远低于GPT-4的预算。
  6. 性能​:在数学、代码、自然语言推理等任务上表现优异,接近OpenAI GPT-4o和Claude-3.5 Sonnet等顶尖模型。
  7. 技术特点​:
    • FP8混合精度训练​:提高训练效率和推理性能。
    • 多头注意力机制(MLA) :增强模型的注意力机制。
    • 多Token预测(MTP) :提升推理速度和模型性能。
    • 负载均衡策略​:通过无辅助损失的负载均衡策略和多Token预测目标(MTP)提升推理性能。
  8. 开源与部署​:完全开源,提供多种部署方案,包括华为昇腾NPU、DeepSeek-Infer Demo、SAGL、Llama2、TensorRT-LLM等。
  9. 应用场景​:广泛应用于自然语言处理、代码生成、数学解题、多模态理解等领域。

综上所述,DeepSeek-V3凭借其高性能、低成本和创新技术,成为国内外AI领域的标杆模型。

精卫模型覆盖的精算任务类型及98%覆盖率依据

  1. 精卫模型覆盖的精算任务类型​:
    • 精卫模型主要用于数据库同步服务,涉及广播表、异构索引、数据导入、平滑扩容、拆分变更等任务。
    • 精卫平台还支持ETL模型设计与集成用户专业调度管理的分布式ETL建模运维系统,包括模型、平台、任务、定时调度、日志、节点、用户等模块。
  2. 98%覆盖率依据​:
    • 覆盖率采用绝对指标来评价,出题方保证所有case的覆盖率一定能够做到最高覆盖率98%。
    • 覆盖率的计算公式为:覆盖率 = (Object 执行数 / 总对象数) * 100%。
    • 在实际应用中,覆盖率达到或高于98%可以得到满分30分。

综上所述,精卫模型覆盖的精算任务类型包括数据库同步服务和ETL模型设计与集成,而98%覆盖率是通过确保所有case的执行数达到总对象数的98%来实现的。

中国人寿采用精卫模型的具体应用场景

  1. 高级风险评估​:中国人寿使用复杂的概率模型来评估人寿保险的长期风险,例如马尔可夫链模型用于预测寿险保单的未来现金流和责任。这种高级风险评估模
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值