视觉大模型(SAM)及其行业扩展(G-SAM) :用于图像分割、目标检测等计算机视觉任务

视觉大模型SAM的定义与核心技术

视觉大模型SAM(Segment Anything Model)是由Meta AI Research于2023年4月5日发布的一种图像分割模型,旨在解决图像分割问题,即在像素级进行分类。SAM的核心技术包括零样本学习、提示工程和大规模数据集训练,使其能够处理从未见过的物体和场景,展现出强大的泛化能力。

定义与核心技术

  1. 零样本学习​​:
    • SAM是一种零样本分割模型,即使在训练中未见过的物体也能进行分割。这意味着模型可以在没有特定任务建模的专业知识、训练计算量和自定义数据标注的情况下,通过提示词工程适应特定任务。
  2. 提示工程​:
    • SAM通过提示词(如点、框、文本或掩码)生成有效的分割掩码。这种提示工程方法使得模型能够根据不同的数据进行训练,适应特定任务。例如,给定一个穿衬衫的人的点提示,模型可以分割出衬衫或穿衬衫的人。
  3. 大规模数据集训练​:
    • SAM在SA-1B数据集上训练,包含1100万张图像和超过1亿个掩模,是历史上最大的分割数据集。数据引擎通过三阶段的数据注释过程(辅助手动、半自动和全自动)收集数据,最终生成了超过10亿个掩码的数据集。
  4. 模型架构​:
    • SAM的架构包括三个主要部分:图像编码器、提示编码器和掩码解码器。图像编码器负责提取图像特征,提示编码器将提示信息嵌入到模型中,掩码解码器则生成分割掩码。这种结构有效分配了计算成本,产生了具有适应性和通用性的分割模型。
  5. 应用领域​:
    • SAM在多个领域展现出广泛的应用潜力,包括自动驾驶、医学图像分析、工业质检、地理信息化和3D建模等。它能够处理复杂的背景和快速移动的目标物体,支持实时交互体验。

优势与局限性

  • 优势​:
    • 强大的零样本泛化能力:能够处理从未见过的物体和场景。
    • 高度可移植性:能够灵活嵌入到其他任务体系中,如文本指令、目标检测和AR眼睛注视范围等。
    • 数据引擎模式:结合人工标注与模型预测标注,构建高质量且多样性的数据集。
  • 局限性​:
    • 训练资源有限:尽管SAM在大规模数据集上训练,但其训练过程仍然需要大量的计算资源。
    • 需要进一步优化:在某些特定任务和复杂场景下,SAM的表现仍有提升空间。

总结

SAM作为计算机视觉领域的里程碑式模型,通过零样本学习、提示工程和大规模数据集训练,实现了图像分割任务的高效和泛化。其在多个领域的应用潜力巨大,为计算机视觉技术的发展带来了新的突破。然而,SAM仍需在训练资源和特定任务性能方面进行进一步优化和改进。

G-SAM作为SAM行业扩展的具体实现方式

G-SAM(Graphene Saturable Absorber Mirror)作为SAM(Saturable Absorber Mirror)的扩展,主要在以下几个方面实现了具体应用:

  1. 材料增强​:G-SAM通过在SLG(石墨烯)表面沉积SiO2作为增强层,显著提高了调制深度(ΔR)和降低了饱和强度(Is),同时增加了非饱和损耗(Rn)。这种增强层不仅提高了设备的光吸收特性,还增强了表面的电场强度,从而提升了整体性能。
  2. 稳定性提升​:SiO2增强层覆盖了石墨烯表面,隔离了外部环境,提高了设备的长期稳定性。这对于实际应用中的耐用性和可靠性至关重要。
  3. 应用领域扩展​:G-SAM在超短脉冲激光器中的应用表现出色,特别是在Q开关和模式锁定方面。实验结果表明,G-SAM能够在不同泵浦功率下保持稳定的脉冲输出,适用于高精度的激光应用。
  4. 技术细节​:G-SAM的制备过程包括在Au/Si反射结构上转移SLG,然后通过PECVD方法沉积SiO2增强层。沉积参数包括RF功率、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值