Helix人形机器人的基本信息(制造商、发布时间、技术参数)
Helix人形机器人的基本信息如下:
- 制造商:Figure AI
- 发布时间:2025年2月20日
- 技术参数:
- 系统架构:Helix采用“系统1+系统2”架构,实现对仿人机器人上半身的高速精准控制。系统2基于7B参数的开源VLM,以7-9Hz频率运行,负责场景理解与语义解析,确保机器人能够理解并执行自然语言提示。
- 控制能力:Helix能够高频率、灵巧地控制整个人形机器人的上半身,包括手腕、躯干、头部和单个手指。它可以在两台机器人上同时操作,实现多机器人协作。
- 硬件配置:Helix搭载在低功耗嵌入式GPU上,支持实时控制。整个系统使用单个神经网络权重组训练所有行为,无需任何特定任务的微调。
- 应用场景:Helix支持自然语言提示,可以轻松拿起几乎所有小型家居物品,包括数千种它们从未见过的物品。
综上所述,Helix人形机器人由Figure AI制造,于2025年2月20日发布,具备先进的视觉语言架构和多机器人协作能力,适用于多种家庭和商业场景。
共享思维(Shared Mind)在机器人领域的定义与实现方式
共享思维(Shared Mind)在机器人领域的定义与实现方式可以从多个角度进行探讨。以下是对共享思维在机器人领域定义与实现方式的总结:
定义
1. 共享思维的定义:
- 共享思维是指多个机器人或机器人与人类之间通过信息共享和协调来共同完成任务的能力。这种能力使机器人能够更好地理解环境、预测需求和应对潜在问题,从而提高任务执行的效率和效果。
- 共享思维不仅涉及信息的共享,还包括对任务目标、环境和对象的共同理解,以及在特定情境下的行动意图。
2. 共享思维的实现:
- 神经芯片技术:塔夫茨大学的Matthias Scheutz教授开发了一种基于神经芯片的技术,使多个机器人能够通过虚拟现实环境中的任务协调来实现共享思维。这种技术允许机器人快速处理图像并共享资源,从而提高任务完成速度。
- 共享注意力:共享注意力是实现共享思维的一种重要机制。通过结合低级特征检测器、先天感知分类器、颜色突出和深度分割,以及动机和行为模型,机器人可以有选择地将计算资源和探索行为集中在环境中的特定对象上。
- 共享概念:机器人可以通过与其他机器人共享对象概念来学习和改进其认知。这种共享概念的融合可以是重叠、互补或混淆信息,具体取决于检测到的信息类型。
- 共享计划:共享计划是一种描述机器人如何协同执行任务的模型。它通过递归定义,基于完整的个体计划和部分个体计划,形成更完整的协同计划。
实现方式
1. 技术实现:
- 神经纳米机器人:通过神经纳米机器人将人类大脑与云端连接,实现即时获取信息和计算能力。这种技术可以实时接收和处理大脑数据,将其转换为可共享的信息,并立即传输到大脑内部的神经纳米机器人。
- 多机器人协作:通过协调人工系统和人类的合作,实现更可靠、节能和道德的AI应用。例如,EM/Dk项目通过协调多个机器人来避免自动驾驶汽车碰撞。
- 共享感知:共享感知是开发用于改善多机器人性能的一种手段。每个机器人都有自己的世界观,但有时可以利用其他实体的一些信息来更有效地执行任务。
2. 应用场景:
- 灾难救援:在灾难救援场景中,机器人可以通过共享感知和协同计划来提高任务执行的效率。例如,机器人可以收集环境信息、绘制地图、清理瓦砾和进行幸存者检测。
- 工业应用:在工业环境中,机器人可以通过共享控制和协作来提高生产效率。例如,通过双向音频/视频连接与机器人互动,脑-机接口(BCI)用户可以控制移动设备。
- 教育和研究:在教育和研究领域,机器人可以通过共享知识和工具来促进学习和创新。例如,谷歌DeepMind通过云技术和深度学习推动机器人技能学习,使成千上万甚至数百万的机器人能够从彼此的经验中学习。
结论
共享思维在机器人领域的实现依赖于多种技术和方法,包括神经芯片技术、共享注意力、共享概念、共享计划和共享感知等。这些技术不仅提高了机器人的任务执行效率,还促进了人机协作和多机器人协同工作。通过这些技术,机器人能够更好地理解环境、预测需求和应对潜在问题,从而实现更高效、更智能的