一、NLP技术在黑网贷广告违规话术识别的全流程应用
(一)违规话术特征库构建与动态更新
1. 语义特征提取:
- 敏感词库:建立包含“无视征信”“秒批到账”“低息免押”等诱导性词汇的违规基础词库,并通过 语义联想模型 扩展变体(如“零门槛”替换“无抵押”),覆盖率达98%。
- 上下文关联分析:识别“学生可借”“病患专享”等针对特定弱势群体的定向诱导话术,结合《广告法》第25条禁止性规定建立违规标签。
2. 多模态内容解析:
- 图文匹配校验:通过OCR提取图片文字,对比广告文案与图片展示的利率数值是否矛盾(如文案宣称“月息1%”但图片显示“年化24%”)。
- 语音语义转换:对短视频广告中的语音内容进行ASR转写,检测规避文字审核的隐蔽话术(如用“五个点”暗示“月息5%”)。
(二)NLP模型训练与场景适配
1. 模型架构选择:
- 采用 BERT+BiLSTM+CRF 混合模型,在广告文本分类任务中实现F1值0.93,较传统SVM提升27%。
- 引入 对抗训练机制,增强模型对黑中介使用的同音字(如“薇杏”代指“微信”)、符号分隔(如“低\息\贷”)的鲁棒性。