严格耦合波分析(RCWA)是一种基于频域的电磁场数值方法,专为周期性纳米结构(如光子晶体、超表面、衍射光栅等)的散射与传输特性分析而设计。其核心优势在于高效处理多层堆叠结构、复杂入射条件(任意角度、偏振态、锥形衍射)以及宽频带响应分析。以下从数学原理、算法实现、多层与复杂入射支持、应用场景及性能优化五个维度展开论述。
一、数学原理:Floquet定理与空间谐波展开
RCWA的数学基础是Floquet定理,其核心思想是将周期性结构中的电磁场展开为空间谐波级数,将麦克斯韦方程组的求解转化为矩阵特征值问题。对于周期为 Λ \Lambda Λ的纳米结构,电磁场分量可表达为:
E ( x , y , z ) = ∑ m , n E m n ( z ) e i ( k x + m 2 π Λ x ) x e i ( k y + n 2 π Λ y ) y \mathbf{E}(x,y,z) = \sum_{m,n} \mathbf{E}_{mn}(z) e^{i(k_x + m\frac{2\pi}{\Lambda_x})x} e^{i(k_y + n\frac{2\pi}{\Lambda_y})y} E(x,y,z)=m,n∑Emn(z)ei(kx+mΛx2π)xei(ky+nΛy2π