粗粒度代理模型:基于图神经网络(GNN)的宏观流场与热场特征捕捉技术体系

图神经网络(GNN)因其对非欧几里得数据的自然表达能力,已成为宏观流场与热场特征建模的核心工具。其核心价值在于:通过图结构的拓扑关系捕捉物理场的空间相关性,同时通过粗粒度建模降低计算复杂度,实现高效且高精度的多物理场预测。以下从架构设计关键技术应用场景性能优势四个维度展开论述。


一、架构设计:多尺度图嵌入与动态更新

粗粒度代理模型的典型架构包含层次化图表示多模态特征融合物理约束嵌入三大模块(图1):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值