图神经网络(GNN)因其对非欧几里得数据的自然表达能力,已成为宏观流场与热场特征建模的核心工具。其核心价值在于:通过图结构的拓扑关系捕捉物理场的空间相关性,同时通过粗粒度建模降低计算复杂度,实现高效且高精度的多物理场预测。以下从架构设计、关键技术、应用场景及性能优势四个维度展开论述。 一、架构设计:多尺度图嵌入与动态更新 粗粒度代理模型的典型架构包含层次化图表示、多模态特征融合与物理约束嵌入三大模块(图1):