一、技术背景与核心挑战
生成式模型(如扩散模型、神经算子)在科学计算与工业仿真中的应用日益广泛,但其黑箱特性导致的结果不可解释性与动态演化不透明性,成为工程师信任的瓶颈。根据NERC标准(MOD-026-2),动态模型验证需满足可重复性与可审计性,而生成模型因缺乏显式物理规则约束,常被视为“不可信工具”。通过动态可视化与规则可解释性增强的协同,可构建人机双向反馈机制,实现以下目标:
- 透明决策:实时展示生成过程的物理约束满足度(如质量守恒、动量平衡);
- 异常检测:通过时空演化热力图定位高风险区域(如湍流边界层分离);
- 信任量化:基于可解释性指标(如SHAP值、残差谱)评估模型可靠性。
二、动态可视化技术体系
1. 多尺度物理场可视化
- 小波域能量谱分析:通过离散小波变换(DWT)将生成结果分解为低频(全局结构)与高频(局部细节),并可视化能量分布。例如,在湍流模拟中,若高频小波系数在边界层区域异常集中(能量占比>30%),提示涡旋破碎风险。
- 时空演化热力图:基于流场速度梯度张量的第二不变量(Q准则)生成涡旋结构,动态渲染其演化过程(图1)。对超临界雷诺数( R e > 1 0 6 Re>10^6 Re>106)工况,结合粒子图像测速(PIV)数据对比,误差区域以红色高亮。
2. 可解释性驱动的交互式探索
- 注意力机制可视化:在扩散模型中,通过梯度加权类激活图(Grad-CAM)显示生成过程的关键区域(如熔池模拟中的激光焦点区域)。工程师可手动调整注意力权重,优化局部细节生成。
- 反事实推理界面:允许用户修改输入参数(如边界条件)并实时观察生成结果变化。例如,在拓扑优化中,若降低材料密度阈值,模型自动生成多孔结构并显示应力集中区域。
3. 实时反馈与异常预警
- 残差动态监控:在Navier-Stokes求解器中嵌入残差计算模块,实时显示质量守恒误差( ∥ ∇ ⋅ u ∥ 2 \|\nabla \cdot \mathbf{u}\|_2 ∥∇