一、配伍禁忌知识库的构建与动态更新
-
标准化规则体系
系统依据《中国药典》、医疗机构处方集及历史文献,建立多维度禁忌规则库:-
十八反核心组合(共18组):
乌头类反贝母/瓜蒌/半夏/白蔹/白及;甘草反甘遂/大戟/海藻/芫花;藜芦反人参/沙参/丹参/玄参/细辛/芍药
-
十九畏关键配伍(共19组):
硫磺-朴硝,水银-砒霜,狼毒-密陀僧,巴豆-牵牛,丁香-郁金,川乌/草乌-犀角,牙硝-三棱,官桂-赤石脂,人参-五灵脂
数据存储采用图数据库(Neo4j)构建配伍禁忌知识图谱,节点包含药材实体、毒性等级、禁忌类型,边权重表示配伍危险系数(0-1)。
-
-
动态知识更新机制
- AI增量学习:通过自然语言处理(NLP)解析新发表文献(如《中南药学》关于中成药联用禁忌的研究),自动更新规则库
- 临床反馈闭环:医师人工复核结果(如问卷反馈的副作用案例)触发规则权重调整,例如将"甘草-甘遂"的禁忌等级从A级提升至S级
二、处方解析与语义处理技术
-
多模态处方解析
系统采用BiLSTM-CRF模型实现处方文本的实体识别:- 药材识别:通过迁移学习适配别名(如"芍药"→"白芍"),准确率≥98.3%
- 剂量标准化:智能转换传统剂量单位(如"钱"→3g,"两"→50g),误差率<1%
- 煎煮参数提取:识别"先煎"、"后下"等指令,并映射至煎药设备控制参数(温度/时间梯度)
-
语义冲突检测
开发双层校验引擎: