一、问题定义与技术挑战
在中药"十八反"配伍禁忌研究中,"甘草-甘遂"组合的毒性机制涉及多酶协同代谢效应与非线性网络互作。传统方法面临以下挑战:
- 多尺度互作复杂性:甘草酸、甘遂萜酯等活性成分通过CYP2D6、CYP3A4等代谢酶网络产生协同/拮抗效应
- 动态剂量依赖:毒性效应随配伍比例(如1:4至4:1)呈现非线性变化(图1)
- 代谢异质性:患者基因型(如CYP2D6*10突变)显著影响毒性阈值
图神经网络(GNN)为解决上述问题提供技术突破点,其核心优势在于:
- 对异构图结构的建模能力(草药成分、代谢酶、毒性终点间多类型关系)
- 消息传递机制可捕获跨层级的生物效应传导路径
- 动态表征学习适应个体化代谢特征
二、技术实现路径与核心算法
1. 三元异质图构建
基于多组学数据融合构建交互矩阵:
\mathcal{G} = (\mathcal{V}, \mathcal{E}), \quad \mathcal{V} = \{\mathcal{V}_{herb}, \mathcal{V}_{enzyme}, \mathcal{V}_{toxin}\}
-
节点特征:
节点类型 特征维度 数据来源 草药成分 分子指纹(1024位) TCMSP数据库 代谢酶 催化活性评分 PharmGKB 毒性终点 病理指标向量 代谢组学实验数据 -
边关系定义:
# 定义三元交互类型 edge_types = [ ('herb', 'inhibits', 'enzyme'), # 甘草酸抑制CYP2D6 ('herb', 'activates', 'enzyme'), # 甘遂萜酯激活CYP3A4 ('enzyme', 'metabolizes', 'toxin'), ('herb', 'synergizes', 'herb') # 甘草-甘遂配伍效应 ]
2. 分层图注意力网络架构
采用GATv2改进模型实现多跳关系学习(图2):
h_i^{(l)} = \sigma\left(\sum_{j \in \mathcal{N}(i)} \alpha_{ij} \mathbf{W}^{(l)} h_j^{(l-1)}\right)
-
动态注意力机制:
\alpha_{ij} = \text{Softmax}\left(\text{LeakyReLU}\left(\mathbf{a}^T [\mathbf{W}h_i \| \mathbf{W}h_j]\right)\right)
其中参数 a \mathbf{a} a引入基因型权重:
\mathbf{a} = f_{MLP}([EF_{CYP2D6}, EF_{CYP3A4}])
-
异质图卷积策略:
对不同关系类型 r ∈ R r \in \mathcal{R} r∈R设计独立参数化矩阵:\mathbf{W}_r^{(l)} = \mathbf{W}^{(l)} \cdot \mathbf{M}_r
其中 M r ∈ R d × d \mathbf{M}_r \in \mathbb{R}^{d \times d} Mr