一、核心架构设计原理与生物学启示
-
存算一体化基础架构
突破冯·诺依曼架构的"内存墙"和"功耗墙",采用混合模数电路实现突触权重与神经元计算的物理耦合。如九天睿芯ADA100芯片通过模拟感知前处理+模数混合存内计算架构,将视觉数据处理功耗降至nW级,同时实现零延时响应。此类设计模仿人脑神经元同时执行存储与计算的功能,在传感端即完成特征提取与初步决策。 -
脉冲神经网络时空编码机制
采用事件驱动型计算模式,仅在有脉冲事件时激活相关计算单元。英特尔Loihi 2芯片通过异步电路设计,使每个神经元的电学状态直接受输入脉冲时序调控,完美适配音频、视觉等具有时间连续性的多模态数据流。清华大学"天机"芯片则验证了LIF(Leaky Integrate-and-Fire)神经元模型在运动控制任务中的时序处理优势。 -
多模态融合的神经通路建模
借鉴人脑联合皮层的信息整合机制,建立跨模态脉冲同步协议。黄泽南团队研究表明,通过STDP(脉冲时间依赖可塑性)学习规则,可在150ms内实现视觉-听觉脉冲序列的权重调谐,这对开发支持语音唇形同步的AR眼镜芯片具有指导意义。
二、关键技术突破路径
-
异构计算单元分层设计
层级 功能模块 技术实现 能效目标 传感层 模态特异性脉冲编码 仿视网膜的GABA能抑制电路</