量子启发搜索:基于Ising模型转化与量子退火加速的状态可达性验证体系

一、问题转化方法论
1. 状态可达性问题的组合优化本质

状态可达性分析旨在验证系统从初始状态$ S_0 到目标状态 到目标状态 到目标状态 S_t $是否存在有效路径,其本质可分解为:

  1. 路径存在性判定:寻找满足状态转移约束的变量配置
  2. 最优路径搜索:在存在多条路径时选择最小代价路径
  3. 动态演化模拟:处理时变系统的时间维度约束

该问题天然具备组合优化属性,可通过Ising模型表达为基态搜索问题。

2. Ising模型映射框架

变量定义

  • 每个状态节点$ S_i 映射为 I s i n g 自旋变量 映射为Ising自旋变量 映射为Ising自旋变量 \sigma_i \in {+1, -1} $
  • 状态转移边$ e_{ij} 映射为耦合系数 映射为耦合系数 映射为耦合系数 J_{ij} $
  • 时间步约束通过链式耦合结构实现(如引入时间戳辅助变量)

能量函数构建
KaTeX parse error: Expected 'EOF', got '}' at position 191: …gma_{S_{t+1}}})}̲_{\text{时间连续性}}…

其中:

  • $ h_i :初始 / 终止状态强化项(如 :初始/终止状态强化项(如 :初始/终止状态强化项(如 h_{S_0}=+1, h_{S_t}=-1 $)
  • $ \lambda :时间约束惩罚系数(典型值 :时间约束惩罚系数(典型值 :时间约束惩罚系数(典型值 \lambda=5 $)

约束编码示例

系统约束类型 Ising模型实现方式 引用来源
互斥状态 添加强负耦合$ J_{AB} = -K $(K→∞)
顺序依赖 链式正耦合$ J_{t,t+1}=+1 $
资源限制 辅助变量+多体相互作用项
3. QUBO形式转换

对含多体相互作用项的系统,引入辅助变量$ \tau_k $实现二次型转换:
H QUBO = ∑ i ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值