Introduction to Linear Algebra, Chapter-1, Introduction to Vectors, Key Notes

Introduction to Linear Algebra, Chapter-1, Introductionto Vectors, Key Notes

本人在阅读MIT数学教授Gilbert Strang所著线性代数教材"Introduction to Linear Algebra(Fifth Edition)"过程中敲下的笔记

我是用的教学视频是BV1uK4y187ep

课后习题答案即其相关资料可参照math.mit.edu/linearalgebra

1.1 Vectors and Linear Combinations

Column Vector(列向量)
v → = [ v 1 v 2 ] \overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} v =[v1v2]

Vector Addition(向量加法)
v → = [ v 1 v 2 ] , w → = [ w 1 w 2 ] , v → + w → = [ v 1 + w 1 v 2 + w 2 ] \overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \quad,\quad \overrightarrow{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \quad,\quad \overrightarrow{v} + \overrightarrow{w} = \begin{bmatrix} v_1 + w_1 \\ v_2 + w_2 \end{bmatrix} v =[v1v2],w =[w1w2],v +w =[v1+w1v2+w2]

Scalar Multiplication(标量乘法)
c v → = [ c v 1 c v 2 ] c \overrightarrow{v} = \begin{bmatrix} c v_1 \\ c v_2 \end{bmatrix} cv =[cv1cv2]

Linear Combination(线性组合)
c v → + d w → = [ c v 1 + d w 1 c v 2 + d w 2 ] c \overrightarrow{v} + d \overrightarrow{w} = \begin{bmatrix} c v_1 + d w_1 \\ c v_2 + d w_2 \end{bmatrix} cv +dw =[cv1+dw1cv2+dw2]

1.2 Length and Dot Products

Dot Product/Inner Product(向量的点积/内积)
v → ⋅ w → = v 1 w 1 + v 2 w 2 \overrightarrow{v} \cdot \overrightarrow{w} = v_1w_1 + v_2w_2 v w =v1w1+v2w2
当两个向量的点积为0时,这两个向量相互垂直(perpendicular)

DEFINITION: Length of Vecter ∣ ∣ v → ∣ ∣ ||\overrightarrow{v}|| v if the squre root of v → ⋅ v → \overrightarrow{v} \cdot \overrightarrow{v} v v
定义:一个向量的模(长度)是它自己和自己的点积的平方根。

l e n g t h = ∣ ∣ v → ∣ ∣ = v → ⋅ v → = ( v 1 2 + v 2 2 + ⋯ + v n 2 ) 1 / 2 \bold{length} = ||\overrightarrow{v}|| = \sqrt{\overrightarrow{v} \cdot \overrightarrow{v}} = (v_1^2 + v_2^2 + \cdots + v_n^2)^{1/2} length=v =v v =(v12+v22++vn2)1/2

DEFINITION: A unit vector is a vector whose length is 1
定义:模长为1的向量叫做单位向量
U n i t    V e c t o r s : u → ⋅ u → = 1 \bold{Unit \; Vectors}: \quad \overrightarrow{u} \cdot \overrightarrow{u} = 1 UnitVectors:u u =1

produce a unit vector in the same direction as v → \overrightarrow{v} v from v → \overrightarrow{v} v
u → = v → / ∣ ∣ v → ∣ ∣ \overrightarrow{u} = \overrightarrow{v} / ||\overrightarrow{v}|| u =v /v

COSINE FORMULA
if v → \overrightarrow{v} v and w → \overrightarrow{w} w are nonzeoro vectors, then
cos ⁡ θ = v → ⋅ w → ∣ ∣ v → ∣ ∣    ∣ ∣ w → ∣ ∣ \cos \theta = \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{||\overrightarrow{v}|| \; ||\overrightarrow{w}||} cosθ=v w v w
θ \theta θ is the angle from v → \overrightarrow{v} v to w → \overrightarrow{w} w

SCHWARZ INEQUALITY(施瓦尔兹不等式)
v → ⋅ w → ≤ ∣ ∣ v → ∣ ∣    ∣ ∣ w → ∣ ∣ \overrightarrow{v} \cdot \overrightarrow{w} \le ||\overrightarrow{v}|| \; ||\overrightarrow{w}|| v w v w
as cos ⁡ ≤ 1 \cos \le 1 cos1

TRIANGLE INEQUALITY(三角不等式)
∣ ∣ v → + w → ∣ ∣ ≤ ∣ ∣ v → ∣ ∣ + ∣ ∣ w → ∣ ∣ ||\overrightarrow{v} + \overrightarrow{w}|| \le ||\overrightarrow{v}|| + ||\overrightarrow{w}|| v +w v +w

几何平均与算数平均
x y ≤ 1 2 ( x + y ) \sqrt{xy} \le \frac{1}{2}(x + y) xy 21(x+y)
can be proved if we let x = a 2 x = a^2 x=a2 and y = b 2 y = b^2 y=b2

1.3 Matrices

矩阵与向量相乘,得到的结果是原矩阵的各个列的线性组合
A x → A\overrightarrow{x} Ax outputs a combination of the columns of A A A

逆矩阵
A x → = b → x → = A − 1 b → A\overrightarrow{x} = \overrightarrow{b} \quad \overrightarrow{x} = A^{-1}\overrightarrow{b} Ax =b x =A1b

书本这里使用一个特殊的例子把矩阵求逆和微积分做了类比,挺精彩的,建议看网课或者教材。

Independence and Dependence(线性相关和线性无关)

A = [ u → , v → , w → ] , A x → = b → A = \begin{bmatrix} \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \end{bmatrix}, A\overrightarrow{x} = \overrightarrow{b} A=[u ,v ,w ],Ax =b

如果这三个向量线性相关(dependent),则 w → \overrightarrow{w} w v → \overrightarrow{v} v n → \overrightarrow{n} n 组成的平面上,如果这三个向量线性无关(inpedendent),则 w → \overrightarrow{w} w 不在 u → \overrightarrow{u} u v → \overrightarrow{v} v 组成的平面上。

如果 u → , v → , w → \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} u ,v ,w 线性无关,只有 0 u → + 0 v → + 0 w → 0\overrightarrow{u}+0\overrightarrow{v}+0\overrightarrow{w} 0u +0v +0w 才能让 b → = 0 \overrightarrow{b}=0 b =0,如果 u → , v → , w → \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} u ,v ,w 线性相关,一定存在其他组和可以让 b → = 0 \overrightarrow{b}=0 b =0

如果 u → , v → , w → \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} u ,v ,w 线性无关,则 A x → = 0 → A\overrightarrow{x}=\overrightarrow{0} Ax =0 只有一个解且 A A A可逆,如果 u → , v → , w → \overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} u ,v ,w 线性相关则 A x → = 0 → A\overrightarrow{x} = \overrightarrow{0} Ax =0 有无穷多的解且矩阵 A A A不可逆(奇异矩阵)

有趣的习题

1.2.32 证明对于三个元素证明几何平均 ≤ \le 算术平均

证明: x y z ≤ 1 3 ( x + y + z ) \sqrt{xyz} \le \frac{1}{3}(x + y + z) xyz 31(x+y+z)
显然,当 x = y = z x=y=z x=y=z是,原不等式成立,其他情况下设 z ≤ x ≤ y z \le x \le y zxy,并令 A = 1 3 ( x + y + z ) A = \frac{1}{3}(x+y+z) A=31(x+y+z),则 z < A < y z < A < y z<A<y
对于 x x x y + z − A y+z-A y+zA两个数,使用对于两个数字的几何平均 ≤ \le 算术平均不等式,有 x ( y + z − A ) ≤ 1 2 ( x + y + z − A ) = A \sqrt{x(y+z-A)} \le \frac{1}{2}(x + y + z - A) = A x(y+zA) 21(x+y+zA)=A
∴ x ( y + z − A ) A ≤ A 3 \therefore x(y+z-A)A \le A^3 x(y+zA)AA3
∴ x [ ( y − A ) ( A − z ) + y z ] ≤ A 3 \therefore x[(y-A)(A-z) + yz] \le A^3 x[(yA)(Az)+yz]A3
∵ ( y − A ) ( A − z ) > 0 \because (y-A)(A-z) \gt 0 (yA)(Az)>0
∴ x y z ≤ A 3 \therefore xyz \le A^3 xyzA3
∴ 3 x y z < A = 1 3 ( x + y + z ) \therefore ^3\sqrt{xyz} \lt A = \frac{1}{3}(x+y+z) 3xyz <A=31(x+y+z)
综上, 3 x y z ≤ 1 3 ( x + y + z ) ^3\sqrt{xyz} \le \frac{1}{3}(x+y+z) 3xyz 31(x+y+z)得证

1.2.34(这道题目有点小错误啊)

题面:
首先,我们随机生成一个三维单位向量 u → \overrightarrow{u} u ,然后,我们随机生成一组三维单位向量 U U U,然后,对于每一个 U i → \overrightarrow{U_i} Ui ,计算 ∣ u → ⋅ U i → ∣ |\overrightarrow{u} \cdot \overrightarrow{U_i}| u Ui ,即 ∣ cos ⁡ ( θ ) ∣ |\cos(\theta)| cos(θ),然后计算所有内积的平均值 a = 1 n ∑ i = 1 i = n ∣ u → ⋅ U i → ∣ a = \frac{1}{n} \sum_{i=1}^{i=n}|\overrightarrow{u} \cdot \overrightarrow{U_i}| a=n1i=1i=nu Ui ,从微积分的角度来讲, a a a的值应该接近 1 π ∫ 0 π ∣ cos ⁡ θ ∣ δ θ = 2 π \frac{1}{\pi} \int_0^{\pi}|\cos \theta| \delta \theta = \frac{2}{\pi} π10πcosθδθ=π2

解题过程:
一开始,我严格按照题目要求计算了这个平均值,发现 a ≈ . 5 a\approx.5 a.5,而 2 π ≈ 0.637 \frac{2}{\pi} \approx 0.637 π20.637,这个差距就有点大了。

我最开始怀疑,是不是因为用randn函数随机生成向量,导致生成的单位向量在三维球面上不能均匀分布,于是我(不怎么严谨的)通过可视化数据的方式查看了一下随机生成的数据,发现分布的很均匀,问题不在这里。

然后,我重新看了几遍体面,发现体面给的这个定积分 1 π ∫ 0 π ∣ cos ⁡ θ ∣ δ θ = 2 π \frac{1}{\pi} \int_0^{\pi}|\cos \theta| \delta \theta = \frac{2}{\pi} π10πcosθδθ=π2的隐含假设是 θ \theta θ [ 0 , π ] [0, \pi] [0,π]上均匀分布,对于随机生成的二维单位向量,向量的“终点”均匀分布在单位圆上,所以 θ \theta θ也是均匀分布的,但如果是对于三维单位向量,虽然其终点在单位球上均匀分布,但是 θ \theta θ未必是均匀分布了

我用Python验证了一下我的猜想,结果如下:

这是针对二维单位向量的结果,可以看到测试样本均匀分布在单位圆上, θ \theta θ也基本呈现均匀分布,所以计算出的均值和理论值 2 / π 2/\pi 2/π基本接近。
在这里插入图片描述

这是针对三维单位向量的结果,可以看到测试样本均匀分布在单位球上,但是 θ \theta θ就不是均匀分布的了,这也导致使用三维向量计算出的 a = 1 n ∑ i = 1 i = n ∣ u → ⋅ U i → ∣ ≈ 0.5 a = \frac{1}{n} \sum_{i=1}^{i=n}|\overrightarrow{u} \cdot \overrightarrow{U_i}| \approx 0.5 a=n1i=1i=nu Ui 0.5,与定积分 1 π ∫ 0 π ∣ cos ⁡ θ ∣ δ θ = 2 π \frac{1}{\pi} \int_0^{\pi}|\cos \theta| \delta \theta = \frac{2}{\pi} π10πcosθδθ=π2相去甚远。
在这里插入图片描述

我承认,MIT教材中引入微积分进行类比的操作让我眼前一亮,但是这一道思考题明显出了一点小差错(难不成是故意的?)

这是网站上这道题目的官方答案:
在这里插入图片描述

我的代码:

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

dim = 3
size = 2000
sns.set()

u = np.random.randn(dim)
u = u / np.linalg.norm(u)

sample = np.random.randn(dim, size)
s = 0
theta = []

for i in range(size):
    v = sample[:, i]
    v = v / np.linalg.norm(v)
    s = s + abs(u.dot(v))
    theta.append(np.arccos(u.dot(v)))
    sample[:, i] = v

s = s / size

if dim == 2:
    plt.figure(figsize=(5, 5))
    plt.scatter(sample[0], sample[1], s=0.1)
    plt.title(f'dim={dim}, ave={s:.3f}, {2 / np.pi=:.3f}, {size=}')
    plt.show()

    plt.figure(figsize=(5, 5))
    plt.hist(theta, bins=30)
    plt.title(f'dim={dim}, ave={s:.3f}, {2 / np.pi=:.3f}, {size=}')
    plt.show()

if dim == 3:
    fig, ax = plt.figure(), plt.axes(projection='3d')
    ax.scatter3D(sample[0], sample[1], sample[2], s=0.5)
    ax.set_title(f'dim={dim}, ave={s:.3f}, {2 / np.pi=:.3f}, {size=}')
    fig.show()

    plt.figure(figsize=(5, 5))
    plt.hist(theta, bins=30)
    plt.title(f'dim={dim}, ave={s:.3f}, {2 / np.pi=:.3f}, {size=}')
    plt.show()

我的1.2习题解答

在这里插入图片描述

我的1.3习题解答

在这里插入图片描述

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值