Introduction to Linear Algebra, Chapter-2, Solving Linear Equations, Key Notes

Introduction to Linear Algebra, Chapter-2, Solving Linear Equations, Key Notes

本人在阅读MIT数学教授Gilbert Strang所著线性代数教材"Introduction to Linear Algebra(Fifth Edition)"过程中敲下的笔记

我是用的教学视频是BV1uK4y187ep

课后习题答案及其它相关资料可参照math.mit.edu/linearalgebra

2.1 Vectors and Linear Equations

从两种角度看待线性方程组

A x → = b → , 假设A是3 by 3的矩阵 A \overrightarrow{x} = \overrightarrow{b}, \text{假设A是3 by 3的矩阵} Ax =b ,假设A3 by 3的矩阵

  • 从行的角度看待(row picture) A x → = b → A \overrightarrow{x} = \overrightarrow{b} Ax =b 表示在三维空间中有三个平面交于一点(A的一行定义一个平面)

  • 从列的角度看待(column picture) A x → = b → A \overrightarrow{x} = \overrightarrow{b} Ax =b 表示要寻找一个关于 A A A的列的线性组合来表示出 b → \overrightarrow{b} b

两种方法计算 A x → A\overrightarrow{x} Ax

  • A A A的每一行与 x → \overrightarrow{x} x 的点积(dot product)
  • A A A的列的线性组合

其它

For m m m by n n n matrices, A x → = 0 → A \overrightarrow{x} = \overrightarrow{0} Ax =0 may have many solutions, those solutions will go into a vector space, the rank of A A A leads to the dimension of that vector space.

2.2 The Idea of Elimination

这章基本就一句重点:forward elimination and back substitution.

elimination在遇到为0的pivot的时候有可能会失败,如果能通过行交换找到非0的pivot,则消元可以继续,如果找不到非0的pivot,则遇到了permanent breakdown,这时候方程组没有解或者有无数解。

2.3 Elimination Using Matrices

从行和列两个角度看待矩阵与向量相乘(再次强调)

A x → A \overrightarrow{x} Ax is a combination of the columns of A A A;
Components of A x → A \overrightarrow{x} Ax are the dot products with rows of A A A;

Elimination Matrix(消元矩阵)

start with the identity matrix I I I, change one of its zeros to the multiplier − l -l l;
for a elimination matrix E i j E_{ij} Eij, it has nonzero entry − l -l l in the ( i , j ) (i, j) (i,j) position, so E i j A E_{ij}A EijA will subtract l l l times of row j j j from row i i i.

交换律和结合律

矩阵乘法满足结合律(associative law),即 A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C
矩阵乘法不满足交换律(commutative law),即 Often  A B ≠ B A \text{Often } AB \neq BA Often AB=BA

矩阵相乘(列视角)

Matrix Multiplication:  A B = A [ b 1 →    b 2 →    b 3 → ] = [ A b 1 →    A b 2 →    A b 3 → ] \text{Matrix Multiplication: } AB = A[\overrightarrow{b_1} \; \overrightarrow{b_2} \; \overrightarrow{b_3}] = [A\overrightarrow{b_1} \; A\overrightarrow{b_2} \; A\overrightarrow{b_3}] Matrix Multiplication: AB=A[b1 b2 b3 ]=[Ab1 Ab2 Ab3 ]

The beauty of matrix multiplication is that all three approaches(rows, columns, whole matrices) come out right(其他视角后续小节讲解)

Permutation Matrix(置换矩阵)

Row Exchange Matrix: P i j P_{ij} Pij is the identity matrix with rows i i i and j j j reversed. When this “permutation matrix P i j P_{ij} Pij multiplies a matrix, it exchanges rows i i i and j j j.

Argumented Matrix(增广矩阵)

We can include b → \overrightarrow{b} b as an extra column of A A A and follow it through elimination.

Argumented Matrix:  [ A    b → ] \text{Argumented Matrix: } [A \; \overrightarrow{b}] Argumented Matrix: [Ab ]

Matrix multiplication works by rows and at the same time by columns:
ROWS: each row of E E E acts on [ A    b → ] [A \; \overrightarrow{b}] [Ab ] to give a row of [ E A    E b → ] [EA \; E\overrightarrow{b}] [EAEb ];
COLUMNS: E E E acts on each column of [ A    b → ] [A \; \overrightarrow{b}] [Ab ] to give a column of [ E A    E b → ] [EA \; E\overrightarrow{b}] [EAEb ];

2.4 Rules for Matrix Operations

看待矩阵乘法的第一种视角:每一个元素都是一个向量内积

The entry in row  i  column  j  of  A B  is (row  i  of  A ) ⋅ (column  j  of  B ) \text{The entry in row } i \text{ column } j \text{ of } AB \text{ is (row } i \text{ of } A) \cdot \text{(column } j \text{ of }B) The entry in row i column j of AB is (row i of A)(column j of B)

看待矩阵乘法的第二种视角:Each column of AB is a combination of the columns of A

matrix A times every column of matrix B:  A [ b 1 →    b 2 →    ⋯    b p → ] = [ A b 1 →    A b 2 →    ⋯    A b p → ] \text{matrix A times every column of matrix B: } A[\overrightarrow{b_1} \; \overrightarrow{b_2} \; \cdots \; \overrightarrow{b_p}] = [A\overrightarrow{b_1} \; A\overrightarrow{b_2} \; \cdots \; A\overrightarrow{b_p}] matrix A times every column of matrix B: A[b1 b2 bp ]=[Ab1 Ab2 Abp ]

看待矩阵乘法的第三种视角:Each row of AB is a combination of the rows of B

every row of A times matrix B:  [ a 1 → a 2 → ⋯ a m → ] B = [ a 1 → B a 2 → B ⋯ a m → B ] \text{every row of A times matrix B: } \begin{bmatrix} \overrightarrow{a_1} \\ \overrightarrow{a_2} \\ \cdots \\ \overrightarrow{a_m} \end{bmatrix} B = \begin{bmatrix} \overrightarrow{a_1} B \\ \overrightarrow{a_2} B \\ \cdots \\ \overrightarrow{a_m} B \end{bmatrix} every row of A times matrix B: a1 a2 am B=a1 Ba2 Bam B

看待矩阵乘法的第四种视角:columns of A multiply rows of B

[ c o l 1    c o l 2 ⋯    c o l n ] × [ r o w 1 r o w 2 ⋯ r o w n ] = c o l 1 × r o w 1 + c o l 2 × r o w 2 + ⋯ + c o l n × r o w n \begin{bmatrix} col_1 \; col_2 \cdots \; col_n \end{bmatrix} \times \begin{bmatrix} row_1 \\ row_2 \\ \cdots \\ row_n \end{bmatrix} = col_1 \times row_1 + col_2 \times row_2 + \cdots + col_n \times row_n [col1col2coln]×row1row2rown=col1×row1+col2×row2++coln×rown

向量的内积和外积(inner product, outer product)

a row times a column is an inner product, or dot product(produce a single number), while a column times a row is an outer product(produce a matrix).

Laws for Matrix Operations

  • 矩阵加法满足交换律(commutative law): A + B = B + A A + B = B + A A+B=B+A

  • 矩阵加法满足分配律(distributive law): c ( A + B ) = c A + c B c(A+B)=cA+cB c(A+B)=cA+cB

  • 矩阵加法满足结合律(associative law): A + ( B + C ) = ( A + B ) + C A+(B+C)=(A+B)+C A+(B+C)=(A+B)+C

  • 矩阵乘法不满足交换律(the commutative law is usually broken): A B ≠ B A AB \neq BA AB=BA

  • 矩阵乘法满足左分配律(distributive law from left): A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC

  • 矩阵乘法满足右分配律(distributive law from right): ( A + B ) C = A C + B C (A+B)C=AC+BC (A+B)C=AC+BC

  • 矩阵乘法满足结合律(associative law): A ( B C ) = ( A B ) C A(BC)=(AB)C A(BC)=(AB)C

Matrix Power

( A p ) ( A q ) = A p + q    ,    ( A p ) q = A p q (A^p)(A^q) = A^{p+q} \; , \; (A^p)^q = A^{pq} (Ap)(Aq)=Ap+q,(Ap)q=Apq

矩阵分块及分块相乘

if blocks of A can multiply blocks of B, then block multiplication of AB is allowed. Cuts between columns of A match cuts of rows of B.

[ A 11    A 12 A 21    A 22 ] [ B 11 B 21 ] = [ A 11 B 11 + A 12 B 21 A 21 B 11 + A 22 B 21 ] \begin{bmatrix} A_{11} \; A_{12} \\ A_{21} \; A_{22} \end{bmatrix} \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix} = \begin{bmatrix} A_{11} B_{11} + A_{12} B_{21} \\ A_{21} B_{11} + A_{22} B_{21} \end{bmatrix} [A11A12A21A22][B11B21]=[A11B11+A12B21A21B11+A22B21]

Block Elimination

[ I 0 → − C A − 1 I ] [ A B C D ] = [ A B 0 → D − C A − 1 B ] \begin{bmatrix} I & \overrightarrow{0} \\ -CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} A & B \\ \overrightarrow{0} & D - CA^{-1}B \end{bmatrix} [ICA10 I][ACBD]=[A0 BDCA1B]

the entry “ D − C A − 1 B D - CA^{-1}B DCA1B” is called Schur complement, 舒尔补

2.5 Inverse Matrices

Six Notes About A − 1 A^{-1} A1

  1. the inverse exists if and onlt if the elimination produces n nonzero pivots(row exchange is allowed).
  2. the matrix A cannot have two different inverses.
  3. if A is invertible, the only solution to A x → = b → A\overrightarrow{x} = \overrightarrow{b} Ax =b is x → = A − 1 b → \overrightarrow{x} = A^{-1}\overrightarrow{b} x =A1b
  4. if there exists a nonzero vector x → \overrightarrow{x} x such that A x → = 0 → A\overrightarrow{x} = \overrightarrow{0} Ax =0 , A is not invertible.
  5. for a 2 × 2 2 \times 2 2×2 matrix, if is invertible onlt if a d − b c ≠ 0 ad - bc \neq 0 adbc=0
    [ a b c d ] − 1 = 1 a d − b c [ d − b − c a ] \begin{bmatrix} a & b \\ c & d \end{bmatrix} ^ {-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} [acbd]1=adbc1[dcba]
  6. a diagonal matrix has an inverse provided that no diagonal entries are zero.

Inverse of Matrix Product

if A and B are invertible, then:
( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)1=B1A1

note that the order is reversed.

this works with three or more matrices:
( A B C ) − 1 = C − 1 B − 1 A − 1 (ABC)^{-1} = C^{-1}B^{-1}A^{-1} (ABC)1=C1B1A1

Gauss-Jordan Elimination

A A − 1 = A [ x 1 → x 2 → x 3 → ] = [ e 1 → e 2 → e 3 → ] = I AA^{-1} = A \begin{bmatrix} \overrightarrow{x_1} & \overrightarrow{x_2} & \overrightarrow{x_3} \end{bmatrix} = \begin{bmatrix} \overrightarrow{e_1} & \overrightarrow{e_2} & \overrightarrow{e_3} \end{bmatrix} = I AA1=A[x1 x2 x3 ]=[e1 e2 e3 ]=I

对于一个 n × n n \times n n×n的矩阵来说,求解其逆矩阵相当于求解n个n元方程组,我们可以同时列出包含了这n个方程组的增广矩阵:

[ 2 − 1 0 1 0 0 − 1 2 − 1 0 1 0 0 − 1 2 0 0 1 ] \begin{bmatrix} 2 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 0 & 0 & 1 \end{bmatrix} 210121012100010001

先进行一轮forward elimination:

[ 2 − 1 0 1 0 0 0 3 2 − 1 1 2 1 0 0 0 4 3 1 3 2 3 0 ] \begin{bmatrix} 2 & -1 & 0 & 1 & 0 & 0 \\ 0 & \frac{3}{2} & -1 & \frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 0 \end{bmatrix} 20012300134121310132000

然后反过来向上消元,将矩阵变为reduced echelon form(最简行阶梯矩阵),这部分由Jordan贡献。

[ 2 0 0 3 2 1 1 2 0 3 2 0 3 4 3 2 3 4 0 0 4 3 1 3 2 3 0 ] \begin{bmatrix} 2 & 0 & 0 & \frac{3}{2} & 1 & \frac{1}{2} \\ 0 & \frac{3}{2} & 0 & \frac{3}{4} & \frac{3}{2} & \frac{3}{4} \\ 0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 0 \end{bmatrix} 200023000342343311233221430

最后,divided each row by its pivots, then we finally get [ I    A − 1 ] [I \; A^{-1}] [IA1] in this argumented matrix;

[ 1 0 0 3 4 1 2 1 4 0 1 0 1 2 1 1 2 0 0 1 1 4 1 2 3 4 ] \begin{bmatrix} 1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix} 10001000143214121121412143

the total cost for A − 1 A^{-1} A1 is n 3 n^3 n3 multiplications and subtractions.

Diagonally dominant matrices are intertible

对角优势矩阵是可逆的(充分不必要);
对角优势矩阵,对角线上的每一个元素,都大于这一行上其余元素的绝对值的和;
对角优势矩阵之所以可逆,是因为其一定满足 A x → = 0 → A\overrightarrow{x} = \overrightarrow{0} Ax =0 没有非零向量解;

2.6 Elimination = Factorization: A = L U A = LU A=LU

矩阵的LU分解

A = L U A = LU A=LU

或者

A = L D U A = LDU A=LDU

其中,L代表下三角矩阵(lower triangular),储存了高斯消元时所有的 l i j l_{ij} lij
D代表对角矩阵(diagonal matrix),储存了所有的pivots(如果愿意写成这种形式的话);
U代表上三角矩阵(upper triangular),储存了A高斯消元后的结果(LU形式)或者将高斯消元后的矩阵每一行除以其pivot的结果(LDU形式);

从LU分解的角度看待线性方程组的求解

方程组 A x → = b → A\overrightarrow{x} = \overrightarrow{b} Ax =b ,如果写成 L U x → = b → LU\overrightarrow{x} = \overrightarrow{b} LUx =b ,相当于解决两个三角形的方程组,先解决 L c → = b → L\overrightarrow{c} = \overrightarrow{b} Lc =b (forward substitution),再解决 U x → = c → U\overrightarrow{x} = \overrightarrow{c} Ux =c (backward substitution)。

The Cost of Elimination

Elimination on a n × n n \times n n×n square matrix A needs 1 3 n ( n + 1 2 ) ( n + 1 ) \frac{1}{3}n(n + \frac{1}{2})(n+1) 31n(n+21)(n+1) multiplications and 1 3 n ( n + 1 2 ) ( n + 1 ) \frac{1}{3}n(n + \frac{1}{2})(n+1) 31n(n+21)(n+1) subtractions.

To solve each right side of the equation, n 2 n^2 n2 muliplications and n 2 n^2 n2 substractions are needed.

对于带宽为 ω \omega ω的带状矩阵(band matrix)来说,消元只需要消耗 n ω 2 n \omega^2 nω2次乘法和减法,求解只需要消耗 2 n ω 2n\omega 2nω次乘法和减法。

2.7 Transposes and Permutations

转置矩阵(Transpose)的一些性质

Sum:  ( A + B ) T = A T + B T Product:  ( A B ) T = B T A T Inverse:  ( A − 1 ) T = ( A T ) − 1 ( A B C ) T = C T B T A T if A is invertible,  A T is invertible, too \text{Sum: } (A + B)^T = A^T + B^T \\ \text{Product: } (AB)^T = B^T A^T \\ \text{Inverse: } (A^{-1})^T = (A^T)^{-1} \\ (ABC)^T = C^T B^T A^T \\ \text{if A is invertible, } A^T \text{is invertible, too} Sum: (A+B)T=AT+BTProduct: (AB)T=BTATInverse: (A1)T=(AT)1(ABC)T=CTBTATif A is invertible, ATis invertible, too

使用矩阵转置表示向量的内积和外积

Inner Product:  x → T y →  , T is inside Outer Product:  x → y → T  , T is outside \text{Inner Product: } \overrightarrow{x}^T \overrightarrow{y} \text{ , T is inside} \\ \text{Outer Product: } \overrightarrow{x} \overrightarrow{y} ^ T \text{ , T is outside} Inner Product: x Ty  , T is insideOuter Product: x y T , T is outside

关于转置矩阵更加“数学”的定义

A T A^T AT is the matrix that makes the following two inner product equal:
( A x → ) T y → = x → T ( A T y → ) (A \overrightarrow{x})^T \overrightarrow{y} = \overrightarrow{x}^T (A^T \overrightarrow{y}) (Ax )Ty =x T(ATy )
because ( A x → ) T y → = x → T A T y → (A\overrightarrow{x})^T \overrightarrow{y} = \overrightarrow{x}^T A^T \overrightarrow{y} (Ax )Ty =x TATy , 使用转置矩阵表示的内积。

斜对称矩阵(Symmetric Matrix)

斜对称矩阵的转置等于本身 P T = P P^T = P PT=P

对于任意矩阵, A A T A A^T AAT的结果是一个斜对称矩阵;

对斜对称矩阵进行高斯消元,计算量可以减半,因为: P = L D U = L D L T P = LDU = LDL^T P=LDU=LDLT

置换矩阵(Permutation Matrix)

DEFINITION: A Permutation Matrix has the rows of an Indetity Matrix I in any order.

P − 1 P^{-1} P1也是一个置换矩阵。

P − 1 = P T P^{-1} = P^T P1=PT,置换矩阵的逆矩阵与转置矩阵相同。

带有行交换的矩阵的LU分解

两种形式:
P A = L U A = L P U PA = LU \\ A = LPU PA=LUA=LPU
第一种形式更加常用;

课后习题

作业里的截图都缺了一角,问题应该出在使用CloudConvert将SVG图像转化成PNG图像的步骤上,先不管。

2.1

在这里插入图片描述

2.2

在这里插入图片描述

2.3

在这里插入图片描述

2.4

在这里插入图片描述

2.5

在这里插入图片描述

2.6

在这里插入图片描述

2.7

在这里插入图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值