多元微积分_如何参数化实现绘制甜甜圈

这篇博客详细介绍了甜甜圈(环面)的三维几何建模过程,通过参数化方法来描述其结构。首先定义了小圆的旋转角度S和半径a,然后利用s和t作为参数,确定了点在zy和zx平面上的位置。接着,通过sinS表达z轴上的高度,用a+b*cosS表示甜甜圈最外层距离圆心的距离。最终,通过s和t的函数定义了位置向量r,从而完整地构建了甜甜圈的数学模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先来分析甜甜圈的结构

从图1可以看出,假设一原点为圆心,绕z轴以b为半径旋转的点(图4),再以这些点为圆心,以a为半径在zy,zx平面做圆(图2)
在这里插入图片描述
相当于给定了t和s的值

将二维的t,s映射到三维
在这里插入图片描述
接下来分析如何参数化

前面定义了小圆的旋转角度S,半径为a,当我们以a为长度旋转时,这个高度就是在z轴的值

sinS=z/a

z(s,t)=a*sinS

这样就定义了这个小圆
在这里插入图片描述
而甜甜圈的最外层距离圆心则为b+a*cosS
在这里插入图片描述
从顶视图看
在这里插入图片描述
从xy平面看
在这里插入图片描述
我们在z轴往下看zy平面,这个圆如何表示

我们已经定义了大圆旋转角度为t,而旋转半径我们已经知道是b+a*cosS

我们可以定义分量x关于s,t的函数:

在这里插入图片描述
在这里插入图片描述
分量y则为(cost)(b+a*cosS)

在这里插入图片描述

在这里插入图片描述
定义位置向量r关于s,t的函数 r ⃗ ( s , t ) \vec{r}(s,t) r (s,t)

(a,b都是常数,变量值包含角度的s和t,且s和t均定义在0-2pi)
在这里插入图片描述
i帽,j帽,k帽:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值