线性代数
文章平均质量分 53
charlie_wang007
纯属个人学习笔记,如有误人子弟,并非本义,有错误请不吝赐教,【线性代数部分来自大神3Blue1Brown的视频,请自行去搜索观看学习,我仅是自己的笔记而已】
展开
-
线性代数-抽象向量空间
向量的本质是什么几何上看,向量是空间里的箭头数学上看,向量是一组实数对但向量的本质到底是什么向量本质上更具有空间性我们实际要处理的空间通常独立于坐标系存在函数,实际也是一种向量(的集合)两个函数相加的过程:既是这一点出两个向量的加和由此可得出:(f+g)(x)=f(x)+d(x)类似于向量的加法再来看函数的数乘类似于向量的数乘满足以下两个条件的函数。我们说他是线性的可加性表明先加和再变换和先变换后加和的结果一致成比性表明先缩放后变换和变换后再缩放的结果一致原创 2021-05-13 13:53:24 · 327 阅读 · 0 评论 -
线性代数-特征向量和特征值
二维:来看一个变换这个变换将空间拉伸,一些向量离开了它原来张成的空间,一些向量还停留在原向量张成的空间发生了线性变换的二维平面,变换后任然停留在原向量张成的空间上(单个向量张成的空间就是一条直线),我们称他为特征向量。停留在原向量张成空间的向量在变换后被缩放的比例,就是这个特征向量的特征值,如:特征值为负,即表示变换将空间发生了翻转(这个特征向量发生了翻转,即表明垂直与这个特征向量的向量集合即是旋转轴)对于三维空间,这一点尤为重要:如果你找到了这个变换的特征向量,也就是你找到了这原创 2021-05-12 15:18:03 · 1794 阅读 · 0 评论 -
线性代数-叉积
叉积二维:1.在二维向量里,两个向量的叉积相当于两个向量围成的面积(将向量v和向量w平移并收尾相连,围成的面积即是v和w的叉积)计算方法:计算面积2.来看看叉积为负值的情况当变换后的向量v在向量w的左边,此时即说明变换时二维空间发生了翻转,得到的叉积即是负值如图:算求上验证:三维三维中即求两个给定三维向量围成的面积,由面积大小所确定目标向量的大小,方向为垂直于输入向量围成的面积(输入两个向量,求一个新的向量)算出面积可以确定向量的长度,方向如何确定呢计算原创 2021-05-12 11:00:53 · 4429 阅读 · 0 评论 -
线性代数-点积与对偶性
关于点积,在神经网络我已经了解过了,再来复习下点积的数学表示:三维二维更高维几何意义:在v和w的长度不变的情况下向量W相对向量v的角度越大,投影越短,乘积越小向量W相对向量v的角度越小,投影越长,乘积越大向量v和向量方向相同,点积为正向量v和向量方向相反,点积为负相互垂直时,投影为0,点积为0二维向量变换到一维数轴上:这与点积运算开起来毫无差别在二维空间内定义一条直线,它的基向量为u-hat,将二维向量投影到这条直线上,实际上这个投影就代表了从二维到一维的变换在原创 2021-05-12 10:51:18 · 367 阅读 · 0 评论 -
线性代数-非方阵(维度的变换)
前面学习了方阵矩阵,如二维空间里的线性变换,三维空间中的线性变换对于三行两列的矩阵,任然可以将第一列理解为变换后的i-hat,第二列理解为变换后的j-hat来自于将二维向量经过某种变换映射到三维空间中:三行两列的矩阵,我们称它为3*2矩阵它的两列表明输入空间有两个基向量三行表示向量有三个坐标这个矩阵的列空间所表示的是三维空间中过原点的一个二维平面但是变换后的秩为3同理,当我们看到一个2*3的矩阵,表明原始空间有三个基向量,变换后的向量有两个坐标表明这是一个代表从三原创 2021-05-11 11:31:02 · 1152 阅读 · 0 评论 -
线性代数-逆矩阵、列空间、秩与零空间
逆变换思想:对于线性方程组可以将其看成是未知向量x经过矩阵A变换后成了向量v:同理二元方程可表示:以二元方程为例,向量x经过A锁代表的变换变成了向量V,这个方程的解依赖与A所代表的变换分两种情况:1.变换后A的行列式不为0,即变换A没有改变空间的维度变换前的向量X和变换后的向量v都是唯一的而且你可以通过逆变换将V变换回X逆变换即将经历的变换恢复到原始状态,因此,矩阵经历了A代表的变换,再作用一次A的逆变换就恢复到了初始的状态利用逆变换的思想,可以很容易的求出向量x在原创 2021-05-10 19:03:09 · 1522 阅读 · 2 评论 -
线性代数-向量,矩阵,线性变换
一.向量向量要求具有两个条件:长度(大小)方向二维:三维:计算机中,向量可看做列表:图中第一个列表有两行 我们说它是二维向量,第二个列表有四行,我们说他是四维向量向量的运算向量加法:@向量加法将对应的行相加(将向量w的起点平移到向量V的终点)(可以理解为从原点先向右走一步,向上两步,再向右走三步,左后向下走一步)//@向量数乘向量的数乘:相当于将向量缩放多少倍1/3×v乘以负数,即向相反方向缩放多少倍将一个向量缩放多少倍,这个倍数就称作标量数学中原创 2021-05-10 14:24:17 · 2885 阅读 · 2 评论 -
线性代数-行列式
行列式如何理解行列式:行列式可以看做是变换后空间被拉伸了多少具体就是求一个给定区域面积增大或减小的比例如:变换后面积增大了6倍剪切变换后因为平行四边形的宽和高没变,所以面积没有改变由此,我们只需要知道变换后的i-hat和j-hat围城的面积相对变换之前的变换,根据网格等距分布,就可以知道所要求的区域的面积变化线性变换的行列式用det()表示,求得的结果是一个整数如:一个线性变换的行列式为3,那么说明这个变换将原来的空间缩放了3倍一个线性变换的行列式为0,说明这个变换将原来原创 2021-05-10 14:22:28 · 861 阅读 · 1 评论 -
傅里叶变化与拉普拉斯变换理解
6.傅里叶变换:其中可去间断点和跳跃间断点属于第一类间断点于是就可以很好的解释拉格朗日和傅里叶之间的争论了——拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号,棱角处会有很小高频波动(吉布斯现象)。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅里叶也是对的。一个从数学家的角度,一个从工程师的角度。7.拉普拉斯变换:傅里叶变换能帮我们解决很多问题,一经问世后便受到广大工程师们的喜爱,因为它给人们提供了一扇不同的窗户来观察世界,从这个窗户来看,很多事原创 2021-03-18 14:15:05 · 2277 阅读 · 0 评论 -
如何理解线性变换
如何理解线性变换:*对象的变换对象的变换等价于坐标系的变换“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换。”说白了就是:“运动是相对的。”让我们想想,达成同一个变换的结果,比如把点(1,1)变到点(2,3)去,你可以有两种做法。第一,坐标系不动,点动,把(1,1)点挪到(2,3)去。第二,点不动,变坐标系,让x轴的度量(单位向量)变成原来的1/2,让y轴的度量(单位向量)变成原先的1/3,这样点还是那个点,可是点的坐标就变成(2,3)了。方式不同,结果一样。从第一个方式来看,那就是把矩原创 2021-03-18 14:08:37 · 1060 阅读 · 1 评论