GBT/Xgboost/Lightgbm

三大集成学习优秀博客汇总 GBT XGboost Lgbm

2019-08-03 20:29:44

阅读数 37

评论数 0

神经网络训练结束后,重新指定输入输出进行预测keras

目录 写在前面 多输入输出模型 重新定义输入输出进行预测 完整代码 写在前面 这几年,深度学习推动了人工智能领域快速的向前发展,神经网络架构也是演变的越来越复杂,经常会有多输入,多输出的情况,然而,我们在使用训练后的模型进行预测的时候,有时并不需要进行和训练时一样的输入和输出,可能...

2019-03-13 12:21:21

阅读数 572

评论数 0

深入理解过拟合与欠拟合

偏差是指我们忽略了多少数据,而方差是指我们的模型对数据的依赖程度。 说你想学英语。你没有先前的语言知识,但你听说最伟大的英国作家是莎士比亚。一个自然的行动方式当然必须是将自己锁定在图书馆并记住他的作品。经过一年的学习,你从学业中走出来,前往纽约市,并向你看到的第一个人打招呼,“Good ...

2019-03-12 18:52:12

阅读数 456

评论数 0

以XGBoost为代表的集成算法体现的哲学思想与数学技巧

目录 哲学思想一:抓住主要矛盾 为什么AdaBoost要增加前一次错分样本的权重? 为什么lightGBM可以忽略梯度小的样本? 哲学思想二: 矛盾在一定条件下是可以相互转化的。 为什么随机森林比单一决策树更好? 为什么要用弱学习器? 用偏差与方差理论解释: 哲学思想三:如无...

2019-03-12 18:49:26

阅读数 556

评论数 0

奇异值分解SVD讲解

奇异值分解技术(简称SVD)具有长期且有些令人惊讶的历史。它开始于社会科学与智力测试。早期的情报研究人员指出,用于衡量智力的不同方面的测试,例如口头和空间,通常是密切相关的。 因此,他们假设有一个共同的智力的一般衡量标准,他们称之为“g”,因为“一般情报”,现在通常被称为“智商”,所以他们着手解...

2019-03-12 10:32:44

阅读数 550

评论数 0

透彻理解深度学习背后的各种思想和思维

深度神经网络在2012年兴起,当时深度学习模型能够在传统机器学习问题,例如图像分类和语音识别,击败最先进的传统方法。这要归功于支撑深度学习的各种哲学思想和各种思维。 抓住主要矛盾,忽略次要矛盾--池化 神经网络中经过池化后,得到的是突出化的概括性特征。相比使用所有提取得到的特征,不仅具有低得多...

2019-03-12 10:25:21

阅读数 636

评论数 0

单样本学习(One shot learning)和孪生网络(Siamese Network)简介

背景 传统观点一般认为深度神经网络通常比较擅长从高维数据中学习,例如图像或者语言,但这是建立在它们有大量标记的样本来训练的情况下。然而,人类却拥有单样本学习的能力--如果你找一个从来没有见过小铲刀的人,给它们一张小铲刀的图片,他们应该就能很成功的将它从其他厨房用具里面鉴别出来。 (从来没有...

2019-03-12 10:21:13

阅读数 1910

评论数 0

conda清理没用的安装包

conda clean -p //删除没有用的包 conda clean -t //tar打包 conda clean -y -all //删除所有的安装包及cache

2019-03-11 22:15:12

阅读数 1871

评论数 0

使用conda安装和卸载各种包

直接使用下面的命令安装 conda install xxx //安装xxx包 卸载 conda uninstall xxx //卸载xxx包 安装指定版本的包,以tensorflow-gpu1.4.0为例 anaconda search -t conda tensorflo...

2019-03-11 22:12:20

阅读数 7729

评论数 0

conda环境管理

conda update -n base conda //update最新版本的conda conda create -n xxxx python=3.5 //创建python3.5的xxxx虚拟环境 conda activate xxxx //开启x...

2019-03-11 21:57:45

阅读数 507

评论数 0

anaconda卸载

anaconda windows版,直接在控制面板的程序与功能下卸载即可 linux版,直接删除安装的文件夹即可,使用 rm -rf file //ubuntu,file 为anaconda安装目录,例/home/anaconda3 ...

2019-03-11 21:53:07

阅读数 527

评论数 0

conda升级命令-升级conda、anaconda及各种包

升级Anaconda需要先升级conda conda update conda conda update anaconda conda update anaconda-navigator //update最新版本的anaconda-navigator conda update xxx ...

2019-03-11 21:44:54

阅读数 3047

评论数 0

python的列表中存在两个冒号

有不少的人在刚接触python的时候,会遇到列表中存在两个冒号的问题,搞得一头雾水,今天为大家解释一下 #创建一个列表lis=[0,1,2,3,4,5,6,7,8,9] lis=[i for i in range(10)] #取后4个数,下面两个结果是一样的,一个是按照倒叙的索引,一个是正序索...

2019-03-10 19:42:19

阅读数 917

评论数 1

数据挖掘中的一些概率论知识

目录 介绍 随机变量 概率分布函数 期望值 协方差 预定义的概率分布 分布混合(Distribution Mixtures) 应用 介绍 为什么我们需要概率论基础才能理解机器/深度学习算法? 上述问题的答案是本文背后的主要动机。机器学习/深度学习通常处理的时随机量,可以认...

2019-03-10 09:49:23

阅读数 600

评论数 0

深度学习中八大类型卷积

本文为大家形象的介绍一下单通道卷积、多通道卷积、3D卷积、1 x 1卷积、转置卷积、扩张卷积、可分离卷积、分组卷积。 目录 单通道卷积 多通道卷积 3D卷积 1 x 1卷积 转置卷积(解卷积、反卷积) 扩张卷积 可分离卷积 空间可分卷积 深度可分卷积 分组卷积 单通道卷...

2019-03-09 11:34:01

阅读数 1117

评论数 0

资本「寒冬」已至,人工智能会同样遇冷吗?

回顾今年国内政策方向和科技巨头的战略布局,不难看出2018年是大数据、AI、互联网三大基础设施技术赋能各行各业的重要一年,发展产业互联网、产业智能与产业大数据已成为众多公司的重要战略目标。然而,今年的寒冬也同样凛冽。国内经济处于下行周期,加之中美贸易战的影响,引发了一些失业潮、跑路潮、返乡潮……不...

2019-01-04 14:49:50

阅读数 809

评论数 0

最新ncRNA数据库大全(含TCGA、ceRNA、exosome等)

一、TCGA相关数据库 数据库名 网址 备注 TCGA-GDC https://portal.gdc.cancer.gov/ TCGA官网 GEPIA http:...

2019-01-04 10:27:24

阅读数 2501

评论数 0

中文姓名按照拼音排序-python

写在前面 在做文档排版的时候经常会遇到姓名的排序问题,当人名很多的时候,我们是不可能人工的一个一个比较排序,那么有什么办法快速解决这一问题吗?答案可定是有,今天为大家介绍一种。 程序 from xpinyin import Pinyin def my_function(lis): ...

2018-11-25 11:32:59

阅读数 4297

评论数 1

关于L1和L2正则化的一些理解

目录   零、简介 一、数学基础 1. 范数 2.拉普拉斯分布 3.高斯分布 二、正则化的理论基础 1.基于约束条件的最优化 2.最大后验概率估计 三、正则化的直观理解 1.L1正则化和特征选择 2.L2正则化和过拟合 3.正则化参数λ 参考 零、简介 机器学习监督...

2018-11-20 19:26:26

阅读数 3229

评论数 1

python异常处理

目录 Python 异常处理 python标准异常 什么是异常? 异常处理 实例 实例 使用except而不带任何异常类型   使用except而带多种异常类型 try-finally 语句 实例 异常的参数 实例 触发异常 实例 实例 用户自定义异常 经验案例...

2018-11-15 19:23:27

阅读数 3110

评论数 0

提示
确定要删除当前文章?
取消 删除