神经网络训练结束后,重新指定输入输出进行预测keras

目录

 

写在前面

多输入输出模型

重新定义输入输出进行预测

完整代码


写在前面

这几年,深度学习推动了人工智能领域快速的向前发展,神经网络架构也是演变的越来越复杂,经常会有多输入,多输出的情况,然而,我们在使用训练后的模型进行预测的时候,有时并不需要进行和训练时一样的输入和输出,可能只需要模型的一部分,这时候我们可以怎么做呢?

多输入输出模型

以下是函数式 API 的一个很好的例子:具有多个输入和输出的模型。函数式 API 使处理大量交织的数据流变得容易。

来考虑下面的模型。我们试图预测 Twitter 上的一条新闻标题有多少转发和点赞数。模型的主要输入将是新闻标题本身,即一系列词语,但是为了增添趣味,我们的模型还添加了其他的辅助输入来接收额外的数据,例如新闻标题的发布的时间等。 该模型也将通过两个损失函数进行监督学习。较早地在模型中使用主损失函数,是深度学习模型的一个良好正则方法。

模型结构如下图所示:

多输入多输出模型

对应的代码

让我们用函数式 API 来实现它。

主要输入接收新闻标题本身,即一个整数序列(每个整数编码一个词)。 这些整数在 1 到 10,000 之间(10,000 个词的词汇表),且序列长度为 100 个词。

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model

# 标题输入:接收一个含有 100 个整数的序列,每个整数在 1 到 10000 之间。
# 注意我们可以通过传递一个 "name" 参数来命名任何层。
main_input = Input(shape=(100,), dtype='int32', name='main_input')

# Embedding 层将输入序列编码为一个稠密向量的序列,
# 每个向量维度为 512。
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)

# LSTM 层把向量序列转换成单个向量,
# 它包含整个序列的上下文信息
lstm_out = LSTM(32)(x)

在这里,我们插入辅助损失,使得即使在模型主损失很高的情况下,LSTM 层和 Embedding 层都能被平稳地训练。 

auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)

此时,我们将辅助输入数据与 LSTM 层的输出连接起来,输入到模型中:

auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input])

# 堆叠多个全连接网络层
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)

# 最后添加主要的逻辑回归层
main_output = Dense(1, activation='sigmoid', name='main_output')(x)

 然后定义一个具有两个输入和两个输出的模型:

model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output]) 

现在编译模型,并给辅助损失分配一个 0.2 的权重。如果要为不同的输出指定不同的 loss_weights 或 loss,可以使用列表或字典。 在这里,我们给 loss 参数传递单个损失函数,这个损失将用于所有的输出。 

 

model.compile(optimizer='rmsprop', loss='binary_crossentropy',
              loss_weights=[1., 0.2])

我们可以通过传递输入数组和目标数组的列表来训练模型: 

model.fit([headline_data, additional_data], [labels, labels],
          epochs=50, batch_size=32)

由于输入和输出均被命名了(在定义时传递了一个 name 参数),我们也可以通过以下方式编译模型: 

model.compile(optimizer='rmsprop',
              loss={'main_output': 'binary_crossentropy', 'aux_output': 'binary_crossentropy'},
              loss_weights={'main_output': 1., 'aux_output': 0.2})

# 然后使用以下方式训练:
model.fit({'main_input': headline_data, 'aux_input': additional_data},
          {'main_output': labels, 'aux_output': labels},
          epochs=50, batch_size=32)

重新定义输入输出进行预测

好了,加入我们已经训练好了上面的模型,我们预测的时候,假如只需要main_input、aux_input和main_output(显然这个例子是不合理),那么可以通过一下方式预测:

#预测前先执行下面的代码,重新定义输入输出
model = Model(inputs=[main_input, auxiliary_input], outputs=main_output) 
#然后使用model.predict进行预测

完整代码

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model

# 标题输入:接收一个含有 100 个整数的序列,每个整数在 1 到 10000 之间。
# 注意我们可以通过传递一个 "name" 参数来命名任何层。
main_input = Input(shape=(100,), dtype='int32', name='main_input')

# Embedding 层将输入序列编码为一个稠密向量的序列,
# 每个向量维度为 512。
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input)

# LSTM 层把向量序列转换成单个向量,
# 它包含整个序列的上下文信息
lstm_out = LSTM(32)(x)

auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)

auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input])

# 堆叠多个全连接网络层
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)

# 最后添加主要的逻辑回归层
main_output = Dense(1, activation='sigmoid', name='main_output')(x)

model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output]) 

model.compile(optimizer='rmsprop', loss='binary_crossentropy',
              loss_weights=[1., 0.2])

model.fit([headline_data, additional_data], [labels, labels],
          epochs=50, batch_size=32)

#预测前先执行下面的代码,重新定义输入输出
model = Model(inputs=[main_input, auxiliary_input], outputs=main_output) 
#然后使用model.predict进行预测

 

  • 0
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在使用Keras训练模型时,可以通过访问模型的层来获取参数。对于Dense层,我们可以使用`layer.get_weights()`方法获取该层的权重和偏置项。其中,权重矩阵的形状为`(input_dim, units)`,偏置项的形状为`(units,)`。 下面是一个示例代码,演示如何输出模型中第一个Dense层的权重矩阵`w`: ```python import numpy as np import tensorflow as tf # 构建一个简单的神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Dense(10, input_dim=5), tf.keras.layers.Dense(1) ]) # 编译模型 model.compile(loss='mse', optimizer='sgd') # 随机生成一些训练数据 X = np.random.randn(100, 5) y = np.random.randn(100, 1) # 训练模型 model.fit(X, y, epochs=10) # 获取第一个Dense层的权重矩阵 layer = model.layers[0] w, b = layer.get_weights() print("权重矩阵w的形状为:", w.shape) print("权重矩阵w的值为:") print(w) ``` 在上述代码中,我们首先构建了一个简单的神经网络模型,包含两个Dense层。然后,我们使用`model.compile()`方法编译模型,并使用随机生成的数据进行训练训练过程结束后,我们通过访问模型的第一个Dense层,使用`layer.get_weights()`方法获取该层的权重矩阵`w`和偏置项`b`。最后,我们将权重矩阵的形状和值输出到控制台。 需要注意的是,模型的训练过程是随机的,每次训练的结果都可能不同。因此,输出的权重矩阵也可能不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值