1.1 命题与联结词
- 命题:把用语言、符号或式子表达的,可以判断真假的陈述句。
- 命题的分类:
简单命题(原子命题): 由简单句构成, 不能再分解成更简单的命题。
复合命题: 由简单命题和联结词构成。
命题常项:简单命题
命题变项:真值可以变化的简单陈述句
- 命题联结词:否定,合取,析取,蕴含,等价
否定联结词 ┓
合取联结词 ∧
析取联结词 V
蕴含联结词
等价联结词
1.2 命题公式及其赋值
- 合式公式
(1) 单个命题变项和命题常项是合式公式, 称作原子命题公式
(2) 若A是合式公式,则 (┓A)也是
(3) 若A, B是合式公式,则(A∧B), (AVB), (AB), (AB)也是
(4) 只有有限次地应用(1)—(3) 形成的符号串才是合式公式
真值表
将命题公式A在所有赋值下取值的情况列成表, 称A的真值表.
构造真值表的步骤:
(1) 找出公式中所含的全部命题变项p1, p2, … , pn(若无下角标
则按字母顺序排列), 列出个全部赋值, 从00...0开始, 至
11...1为止.
(2) 按从低到高的顺序写出公式的各个层次.
(3) 对每个赋值依次计算各层次的真值, 直到最后计算出公式
的真值为止.
例子:
写出下列公式的真值表, 并求它们的成真赋值和成假赋值.
(1) (pq) ¬r
公式类型:重言式、矛盾式、可满足式
重言式:若A在它的任何赋值下均为真, 则称A为重言式或永真式;
矛盾式:若A在它的任何赋值下均为假, 则称A为矛盾式或永假式;
可满足式:若A不是矛盾式, 则称A是可满足式.