第一章 命题逻辑
1.1 命题及表示方法
1.1.1 基本知识
-
命题
-
能表达判断的语句
-
并具有确定真值的陈述句
-
-
真值
-
一个命题的值,该值只有两种
-
真(True),用 T 表示
-
假(False),用 F 表示
-
-
悖论
- 语句既为真,同时又包含假的不是命题
1.1.2 五个句式
- 陈述句:述说一件事情的句子,句末用句号。
- 祈使句:要求或者希望别人做什么事或者不做什么事用的句子,句末用句号或感叹号。
- 疑问句:提出问题的句子,句末用问号。
- 感叹号:带有浓厚的感情的句子,句末用感叹号。
- 悖论:自相矛盾的陈述。 悖:相反
- 命令句,感叹句,疑问句均不是命题
1.1.3 命题分类
- 原子命题:一个命题,不能分解成为更简单的命题。例:我是一位学生
- 复合命题:若干个原子命题使用适当的联结词、标点所组成的新命题 例:我是一位学生和他是一位工人
1.1.4 命题的表示
- 使用大写字母A、B、… 、P、Q、 … (常用方式) P: 今天下雨。
- 带下标的大写字母 P
1
:今天下雨。 - 方括号括起来的数字 [12]: 今天下雨
1.1.5 关于命题的几个概念
- 命题标识符–表示命题的符号。
- 命题常量–命题标识符表示有确定真值的命题。
- 命题变元–当命题标识符只表示任意命题的位置。(注:命题变元不是命题)
- 指派–当命题变元P用一个特定的命题取代时,P才能确定真值,称对P进行指派。
- 原子变元–命题变元表示原子命题时。
- 命题判断规则
- 是否陈述句
- 是否悖论
- 真值是否唯一
1.2 联结词
-
否定、合取、析取、条件、双条件五个联结词
-
例图:
-
否定 “非”
-
合取 “并”
-
析取 “或”
-
条件 “如果P,那么Q” 或 “若P则Q” ,当且仅当P为T, Q为F时,P -> Q 为 F,否则 P -> Q 均为 T
- P:称为前件、条件、前提、假设
- Q:称为后件、结论。
- 若P则Q,P是Q的充分条件,Q是P的必要条件,Q每当P,P仅当Q
- 仅当你走我将留下 Q–>P
- 我去镇上,仅当我有时间时 Q–>R
-
双条件 “P当且仅当Q”,当P、Q真值相同时,P<->Q真值为T,否则真值为F(有时用"<->"或"iff"表示 )
注意:
-
只注意命题的真假值,而不再去注意命题的汉语意义。
-
对命题联结词,只注意真值表的定义,而不注意他日常生活中的含义。
1.3 命题公式与翻译
1.3.1 命题公式
-
由命题变元、常元、联结词、括号,以规定的格式联结起来的字符串。
-
定义:命题演算的合式公式(wff)
规定为:
- 单个命题变元本身是一个合式公式。
- 如果A是合式公式,那么 ┐A是合式公式。
- 若A、B是合式公式,则(A∧B)、(A∨B)、(A→B)、(A<–>B)
- 当且仅当能够有限次地应用(1)、(2)、(3)所得到的包含命题变元,联结词和括号的符号串是合式公式。
1.3.2 命题联结词的优先级
- 先括号内,后括号外。
- 运算时联结词的优先次序为:┐ ∧ ∨ → <–>
- 相同联结词按从左到右的次序进行运算。
- 最外层的括号一律均可省去
1.4 真值表与等价公式
1.4.1 真值表
n个命题有2的n次方个真值指派
1.4.2 等价
-
等价 <=>
- A和B的真值均相同,则称A和B是等价的或逻辑相等。
-
定义:如果X是合式公式A的一部分,且X本身也是一个合式公式,则称X是A的子公式
-
定理 :设X是合式公式A的子公式,X<=>Y,如果将A中的X用Y来置换,所得到公式A在相应的指派情况下,其真值亦必相同,故A<=>B。
-
等价公式
1.5 重言式与蕴含式
1.5.1 重言式与矛盾式
-
重言式(永真式)
- 无论对分量怎样指派,真值永为T
-
矛盾式(永假式)
-
无论对分量怎样指派,真值永为F
-
定理
-
永真式的否定为永假式
-
永假式的否定为永真式
-
两个重言式的析取、合取还是重言式。
-
一个重言式,对同一分量都用任何合式公式置换,其结果认为一个重言式
-
设A、B为;两个命题公式,A<=>B当且仅当A<->B为一个重言式
-
A<=>B (等价)的充要条件是A<->B为重言式
-
1.5.2 蕴含式
-
蕴含式
- 当且仅当 P->Q 是一个重言式时,我们称"P蕴含Q",并记作P=>Q 。读作 “P蕴含Q”,“P永真蕴含Q”,“P能推得Q”。
-
常用的蕴含式
-
等价式 蕴含式的关系
A<=>B的充分必要条件是A=>B且B=>A
-
蕴含的性质
- 设A、B、C为合式公式,若A=>B,且A是重言式,则B必是重言式
- 若A=>B,B=>C,则 A=>C
- 若 A=>B 且 A=>C, 则 A=>(B∧C)
- 若 A =>B 且 C=>B , 则 A ∨ C =>B
1.6 其他联结词
-
不可兼析取
当且仅当P与Q的真值不相同时,才为T
-
不可兼取(异或)的性质:
- 条件否
- 与非
-
性质
- 或非
-
性质
1.7 对偶与范式
1.7.1 对偶式
定义1.7.1:在给定的命题公式中,
-
将联结词 ∨ 换成 ∧,
-
或将 ∨ 换成 ∧ ,
-
若有特殊变元F和T也相互取代,
所得公式A*称为A的对偶式。反之也成立
注意:
1. 若命题公式中有联结词→ <->,必须化成由联结词 ┐ ∧ ∨ 组成的等价的命题公式,然后求他的对偶式;
2. 在写对偶式是,原命题公式中括号不能省去,必须按优先级的次序画上括号,并在求其对偶式时仍将保留括号。
1.7.2 范式
- 把命题公式归为一种标准的形式,称此标准形式为范式。
1.合取范式和析取范式
-
求合取范式和析取范式的步骤:
1.7.3 主析取范式
1. 小项
-
小项
-
小项编码
-
小项的性质
2. 主析取范式
1.7.4 主合取范式
1. 大项
- 大项
- 大项编码
- 大项性质
2. 主合取范式
1.8 推理理论
-
三类证明
-
真值表法
-
直接证明法
-
间接证明法
-
1. 真值表法
2. 直接证法
3. 间接证明法1
4. 间接证明法2
第二章 谓词逻辑
2.1 谓词的概念与表示法
2.1.1 谓词
- 命题是具有真假意义的城数据,一个陈述句由主语和谓语两部分组成。
- 为了研究内部关系,把主语称为个体或客体,把谓语称为谓词。
定义:在反映判断的句子中,用以刻划客体的性质或关系的即是谓词
2.2 谓词逻辑
-
命题函数
-
量词
2.3 谓词公式与翻译
2.4 变元的约束
2.5 谓词演算的等价式与蕴含式
一、概念
二、谓词演算的一些等价式与蕴含式
1. 命题公式的推广
3. 量词辖域的扩张及其收缩律
4. 量词与命题联结词之间的一些等价式
5. 量词与命题联结词之间的一些蕴含式
6. 多个量词的使用
7. 谓词公式的对偶式
2.6 前束范式
一、前束范式
二、前束合取范式
三、签署析取范式
┐ ∧ ∨ → <–>