离散数学 ->(个人学习记录笔记)

第一章 命题逻辑

1.1 命题及表示方法

1.1.1 基本知识

  • 命题

    • 能表达判断的语句

    • 并具有确定真值的陈述句

  • 真值

    • 一个命题的值,该值只有两种

    • 真(True),用 T 表示

    • 假(False),用 F 表示

  • 悖论

    • 语句既为真,同时又包含假的不是命题

1.1.2 五个句式

  1. 陈述句:述说一件事情的句子,句末用句号
  2. 祈使句:要求或者希望别人做什么事或者不做什么事用的句子,句末用句号感叹号
  3. 疑问句:提出问题的句子,句末用问号
  4. 感叹号:带有浓厚的感情的句子,句末用感叹号
  5. 悖论:自相矛盾的陈述。 :相反
  • 命令句,感叹句,疑问句均不是命题

1.1.3 命题分类

  1. 原子命题:一个命题,不能分解成为更简单的命题。例:我是一位学生
  2. 复合命题:若干个原子命题使用适当的联结词、标点所组成的新命题 例:我是一位学生和他是一位工人

1.1.4 命题的表示

  1. 使用大写字母A、B、… 、P、Q、 … (常用方式) P: 今天下雨。
  2. 带下标的大写字母 P 1:今天下雨。
  3. 方括号括起来的数字 [12]: 今天下雨

1.1.5 关于命题的几个概念

  1. 命题标识符–表示命题的符号。
  2. 命题常量–命题标识符表示有确定真值的命题。
  3. 命题变元–当命题标识符只表示任意命题的位置。(注:命题变元不是命题)
  4. 指派–当命题变元P用一个特定的命题取代时,P才能确定真值,称对P进行指派。
  5. 原子变元–命题变元表示原子命题时。
  • 命题判断规则
    • 是否陈述句
    • 是否悖论
    • 真值是否唯一

1.2 联结词

  • 否定、合取、析取、条件、双条件五个联结词

  • 例图:
    在这里插入图片描述

  1. 否定 “非”

  2. 合取 “并”

  3. 析取 “或”

  4. 条件 “如果P,那么Q” 或 “若P则Q” ,当且仅当P为T, Q为F时,P -> Q 为 F,否则 P -> Q 均为 T

    • P:称为前件、条件、前提、假设
    • Q:称为后件、结论。
    • 若P则Q,P是Q的充分条件,Q是P的必要条件,Q每当P,P仅当Q
    • 仅当你走我将留下 Q–>P
    • 我去镇上,仅当我有时间时 Q–>R
  5. 双条件 “P当且仅当Q”,当P、Q真值相同时,P<->Q真值为T,否则真值为F(有时用"<->"或"iff"表示 )

在这里插入图片描述

注意:

  1. 只注意命题的真假值,而不再去注意命题的汉语意义。

  2. 对命题联结词,只注意真值表的定义,而不注意他日常生活中的含义。

1.3 命题公式与翻译

1.3.1 命题公式

  • 由命题变元常元联结词、括号,以规定的格式联结起来的字符串。

  • 定义:命题演算的合式公式(wff)

规定为:

  1. 单个命题变元本身是一个合式公式。
  2. 如果A是合式公式,那么 ┐A是合式公式。
  3. 若A、B是合式公式,则(A∧B)、(A∨B)、(A→B)、(A<–>B)
  4. 当且仅当能够有限次地应用(1)、(2)、(3)所得到的包含命题变元,联结词和括号的符号串是合式公式。
    在这里插入图片描述

1.3.2 命题联结词的优先级

  1. 先括号内,后括号外。
  2. 运算时联结词的优先次序为:┐ ∧ ∨ → <–>
  3. 相同联结词按从左到右的次序进行运算。
  4. 最外层的括号一律均可省去
在这里插入图片描述

1.4 真值表与等价公式

1.4.1 真值表

n个命题有2的n次方个真值指派

在这里插入图片描述

1.4.2 等价

  • 等价 <=>

    • A和B的真值均相同,则称A和B是等价的或逻辑相等。
  • 定义:如果X是合式公式A的一部分,且X本身也是一个合式公式,则称X是A的子公式

    在这里插入图片描述
在这里插入图片描述
  • 定理 :设X是合式公式A的子公式,X<=>Y,如果将A中的X用Y来置换,所得到公式A在相应的指派情况下,其真值亦必相同,故A<=>B。

  • 等价公式

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

1.5 重言式与蕴含式

1.5.1 重言式与矛盾式

  • 重言式(永真式)

    • 无论对分量怎样指派,真值永为T
  • 矛盾式(永假式)

  • 无论对分量怎样指派,真值永为F

  • 定理

    1. 永真式的否定为永假式

    2. 永假式的否定为永真式

    3. 两个重言式的析取、合取还是重言式。

    4. 一个重言式,对同一分量都用任何合式公式置换,其结果认为一个重言式

    5. 设A、B为;两个命题公式,A<=>B当且仅当A<->B为一个重言式

    6. A<=>B (等价)的充要条件是A<->B为重言式

在这里插入图片描述

1.5.2 蕴含式

  • 蕴含式

    • 当且仅当 P->Q 是一个重言式时,我们称"P蕴含Q",并记作P=>Q 。读作 “P蕴含Q”,“P永真蕴含Q”,“P能推得Q”。
    在这里插入图片描述
  • 常用的蕴含式

    在这里插入图片描述
在这里插入图片描述
  • 等价式 蕴含式的关系

    A<=>B的充分必要条件是A=>B且B=>A

  • 蕴含的性质

    1. 设A、B、C为合式公式,若A=>B,且A是重言式,则B必是重言式
    2. 若A=>B,B=>C,则 A=>C
    3. 若 A=>B 且 A=>C, 则 A=>(B∧C)
    4. 若 A =>B 且 C=>B , 则 A ∨ C =>B

1.6 其他联结词

  1. 不可兼析取在这里插入图片描述

    当且仅当P与Q的真值不相同时,才为T

    在这里插入图片描述
  • 不可兼取(异或)的性质:

    在这里插入图片描述
在这里插入图片描述
  1. 条件否在这里插入图片描述
在这里插入图片描述
  1. 与非在这里插入图片描述
在这里插入图片描述
  • 性质

    在这里插入图片描述
  1. 或非在这里插入图片描述
在这里插入图片描述
  • 性质

    在这里插入图片描述
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

1.7 对偶与范式

1.7.1 对偶式

定义1.7.1:在给定的命题公式中,

  • 将联结词 ∨ 换成 ∧,

  • 或将 ∨ 换成 ∧ ,

  • 若有特殊变元F和T也相互取代,

    所得公式A*称为A的对偶式。反之也成立

    在这里插入图片描述

    注意:

    ​ 1. 若命题公式中有联结词→ <->,必须化成由联结词 ┐ ∧ ∨ 组成的等价的命题公式,然后求他的对偶式;

在这里插入图片描述

​ 2. 在写对偶式是,原命题公式中括号不能省去,必须按优先级的次序画上括号,并在求其对偶式时仍将保留括号。

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

1.7.2 范式

  • 把命题公式归为一种标准的形式,称此标准形式为范式。

1.合取范式和析取范式

在这里插入图片描述
  1. 求合取范式和析取范式的步骤:

    在这里插入图片描述
在这里插入图片描述 在这里插入图片描述

1.7.3 主析取范式

1. 小项
  1. 小项

    在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  1. 小项编码

    在这里插入图片描述
  2. 小项的性质

    在这里插入图片描述
在这里插入图片描述
2. 主析取范式
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

1.7.4 主合取范式

1. 大项
  1. 大项
在这里插入图片描述 在这里插入图片描述
  1. 大项编码
在这里插入图片描述
  1. 大项性质
在这里插入图片描述
2. 主合取范式
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

在这里插入图片描述

在这里插入图片描述 在这里插入图片描述

1.8 推理理论

  • 三类证明

    • 真值表法

    • 直接证明法

    • 间接证明法

在这里插入图片描述 在这里插入图片描述

1. 真值表法

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

2. 直接证法

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

3. 间接证明法1

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

4. 间接证明法2

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

第二章 谓词逻辑

2.1 谓词的概念与表示法

2.1.1 谓词

  • 命题是具有真假意义的城数据,一个陈述句由主语和谓语两部分组成。
  • 为了研究内部关系,把主语称为个体或客体,把谓语称为谓词。

定义:在反映判断的句子中,用以刻划客体的性质或关系的即是谓词

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

2.2 谓词逻辑

  1. 命题函数

    在这里插入图片描述
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
  1. 量词

    在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

2.3 谓词公式与翻译

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

2.4 变元的约束

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

2.5 谓词演算的等价式与蕴含式

一、概念

在这里插入图片描述 在这里插入图片描述

二、谓词演算的一些等价式与蕴含式

1. 命题公式的推广
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
3. 量词辖域的扩张及其收缩律
在这里插入图片描述 在这里插入图片描述
4. 量词与命题联结词之间的一些等价式
在这里插入图片描述 在这里插入图片描述
5. 量词与命题联结词之间的一些蕴含式
在这里插入图片描述 在这里插入图片描述
6. 多个量词的使用
在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述
7. 谓词公式的对偶式
在这里插入图片描述

2.6 前束范式

一、前束范式

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 image-20210402155038597 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

二、前束合取范式

在这里插入图片描述 在这里插入图片描述 在这里插入图片描述 在这里插入图片描述

三、签署析取范式

在这里插入图片描述

┐ ∧ ∨ → <–>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

slience_me

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值