关于插值法的一些总结

插值法

许多实际问题都用函数 y = f ( x ) y=f(x) y=f(x)来表示某种内在规律的数量关系,其中相当一部分函数是通过实验或观测得到的,虽然 f ( x ) f(x) f(x)在某个区间 [ a , b ] [a,b] [a,b]上是存在的,其中一些是连续的,但是有相当的一部分却只能给出 [ a , b ] [a,b] [a,b]上一系列点 x i x_i xi的函数值 y i = f ( x i ) , ( i = 0 , 1 , ⋯   , n ) y_i=f(x_i),(i=0,1,\cdots,n) yi=f(xi),(i=0,1,,n),这相当于是一张函数表.有的函数虽然有表达式,但是由于计算复杂,使用起来很不方便,通常也是造一个函数表,但是由于一些情况下,需要求出不在表上的函数值.
因此,我们可以根据给定的函数表做一个既能反应 f ( x ) f(x) f(x)特性又便于计算的简单函数 P ( x ) P(x) P(x) P ( x ) P(x) P(x)近似 f ( x ) f(x) f(x).通常选一类较简单的函数(如代数多项式或分段代数多项式)作为 P ( x ) P(x) P(x),并使 P ( x i ) = f ( x i ) P(x_i)=f(x_i) P(xi)=f(xi) i = 0 , 1 , ⋯   , n i=0,1,\cdots,n i=0,1,,n成立.这样确定的 P ( x ) P(x) P(x)就是插值函数.
  • 设函数 y = f ( x ) y=f(x) y=f(x)在区间 [ a , b ] [a,b] [a,b]上有定义,且已知在点 a ≤ x 0 < x 1 < ⋯ < x n ≤ b a \le x_0 <x_1< \cdots < x_n \le b ax0<x1<<xnb上的值 y 0 , y 1 , ⋯   , y n y_0,y_1,\cdots,y_n y0,y1,,yn,若存在一简单函数 P ( x ) P(x) P(x),使
    P ( x i ) = y i , ( i = 0 , 1 , ⋯   , x n ) P(x_i)=y_i,(i=0,1,\cdots,x_n) P(xi)=yi,(i=0,1,,xn)
    成立,就称 P ( x ) P(x) P(x) f ( x ) f(x) f(x)的插值函数,点 x 0 , x 1 , ⋯   , x n x_0,x_1,\cdots,x_n x0,x1,,xn称为插值节点,包含插值节点的区间 [ a , b ] [a,b] [a,b]称为插值空间,求插值函数 P ( x ) P(x) P(x)的方法称为插值法.若 P ( x ) P(x) P(x)是次数不超过 n n n的代数多项式,即
    P ( x ) = a 0 + a 1 x + ⋯ + a n x n P(x)=a_0+a_1x+\cdots+a_nx^n P(x)=a0+a1x++anxn,
    其中 a i a_i ai为实数,就称 P ( x ) P(x) P(x)为插值多项式,相应的插值法称为多项式插值.若 P ( x ) P(x) P(x)为分段的多项式,就称为分段插值.

拉格朗日插值

首先 n = 1 n=1 n=1的情况下,假定区间 [ x k , x k + 1 ] [x_k,x_{k+1}] [xk,xk+1]及端点函数值 y k = f ( x k ) , y k + 1 = f ( x k + 1 ) y_k=f(x_k),y_{k+1}=f(x_{k+1}) yk=f(xk),yk+1=f(xk+1),要求线性插值多项式 L 1 ( x ) L_1(x) L1(x),使之满足
L 1 ( x k ) = y k , L 1 ( x k + 1 ) = y k + 1 L_1(x_k)=y_k,L_1(x_{k+1})=y_{k+1} L1(xk)=yk,L1(xk+1)=yk+1.
y = L 1 ( x ) y=L_1(x) y=L1(x)的几何意义就是通过 ( x k , y k ) , ( x k + 1 , y k + 1 ) (x_k,y_k),(x_{k+1},y_{k+1}) (xk,yk),(xk+1,yk+1)两点的直线.由几何意义直接给出
L 1 ( x ) = y k + y k + 1 − y k x k + 1 − x k ( x − x k ) L_1(x)=y_k+\frac{y_{k+1}-y_k}{x_{k+1}-x_k}(x-x_k) L1(x)=yk+xk+1xkyk+1yk(xxk) (点斜式),
L 1 ( x ) = x k + 1 − x x k + 1 − x k y k + x − x k x k + 1 − x k y k + 1 L_1(x)=\frac{x_{k+1}-x}{x_{k+1}-x_k}y_k+\frac{x-x_k}{x_{k+1}-x_k}y_{k+1} L1(x)=xk+1xkxk+1xyk+xk+1xkxxkyk+1(两点式).
由两点式可以看出, L 1 ( x ) L_1(x) L1(x)是由两个线性函数
l k ( x ) = x − x k + 1 x k − x k + 1 , l k + 1 ( x ) = x − x k x k + 1 − x k l_k(x)=\frac{x-x_{k+1}}{x_k-x_{k+1}},l_{k+1}(x)=\frac{x-x_k}{x_{k+1}-x_k} lk(x)=xkxk+1xxk+1,lk+1(x)=xk+1xkxxk的线性组合得到,其系数分别为 y k , y k + 1 y_k,y_{k+1} yk,yk+1
L 1 ( x ) = y k l k ( x ) + y k + 1 l k + 1 ( x ) L_1(x)=y_kl_k(x)+y_{k+1}l_{k+1}(x) L1(x)=yklk(x)+yk+1lk+1(x).其中函数 l k ( x ) , l k + 1 ( x ) l_k(x),l_{k+1}(x) lk(x),lk+1(x)为线性插值基函数

n = 2 n=2 n=2的情况.假定插值节点为 x k − 1 , x k , x k + 1 x_{k-1},x_k,x_{k+1} xk1,xk,xk+1,其二次插值多项式 L 2 ( x ) L_2(x) L2(x)使其满足
L 2 ( x j ) = y j , ( j = k − 1 , k , k + 1 ) L_2(x_j)=y_j,(j=k-1,k,k+1) L2(xj)=yj,(j=k1,k,k+1),此时 y = L 2 ( x ) y=L_2(x) y=L2(x)在几何意义上是通过 ( x k − 1 , y k − 1 ) , ( x k , y k ) , ( x k + 1 ∗ , y k + 1 ) (x_{k-1},y_{k-1}),(x_k,y_k),(x_{k+1*},y_{k+1}) (xk1,yk1),(xk,yk),(xk+1,yk+1)三点的抛物线
该节点满足:
{ l k − 1 ( x k − 1 ) = 1 , l k − 1 ( x j ) = 0 , ( j = k , k + 1 ) l k ( x k ) = 1 , l k ( x j ) = 0 , ( j = k − 1 , k + 1 ) l k + 1 ( x k + 1 ) = 1 , l k + 1 ( x j ) = 0 , ( j = k − 1 , k ) \begin{cases} l_{k-1}(x_{k-1})=1,l_{k-1}(x_j)=0,(j=k,k+1) \\ l_k(x_k)=1,l_k(x_j)=0,(j=k-1,k+1) \\ l_{k+1}(x_{k+1})=1,l_{k+1}(x_j)=0,(j=k-1,k) \end{cases} lk1(xk1)=1,lk1(xj)=0,(j=k,k+1)lk(xk)=1,lk(xj)=0,(j=k1,k+1)lk+1(xk+1)=1,lk+1(xj)=0,(j=k1,k),由它的两个零点有:
l k − 1 ( x ) = A ( x − x k ) ( x − x k + 1 ) l_{k-1}(x)=A(x-x_k)(x-x_{k+1}) lk1(x)=A(xxk)(xxk+1),其中 A A A为待定系数,由条件 l k − 1 ( x k − 1 ) = 1 ⟹ A = 1 ( x k − 1 − x k ) ( x k − 1 − x k + 1 ) l_{k-1}(x_{k-1})=1 \Longrightarrow A=\frac{1}{(x_{k-1}-x_k)(x_{k-1}-x_{k+1})} lk1(xk1)=1A=(xk1xk)(xk1xk+1)1所以有:
{ l k − 1 ( x ) = ( x − x k ) ( x − x k + 1 ) ( x k − 1 − x k ) ( x k − 1 − x k + 1 ) l k ( x ) = ( x − x k − 1 ) ( x − x k + 1 ) ( x k − x k − 1 ) ( x k − x k + 1 ) l k + 1 ( x ) = ( x − x k − 1 ) ( x − x k ) ( x k + 1 − x k − 1 ) ( x k + 1 − x k ) \begin{cases} l_{k-1}(x)=\frac{(x-x_k)(x-x_{k+1})}{(x_{k-1}-x_k)(x_{k-1}-x_{k+1})} \\ l_k(x)=\frac{(x-x_{k-1})(x-x_{k+1})}{(x_k-x_{k-1})(x_k-x_{k+1})} \\ l_{k+1}(x)=\frac{(x-x_{k-1})(x-x_k)}{(x_{k+1}-x_{k-1})(x_{k+1}-x_k)} \end{cases} lk1(x)=(xk1xk)(xk1xk+1)(xxk)(xxk+1)lk(x)=(xkxk1)(xkxk+1)(xxk1)(xxk+1)lk+1(x)=(xk+1xk1)(xk+1xk)(xxk1)(xxk)
L 2 ( x ) = y k − 1 l k − 1 ( x ) + y k l k ( x ) + y k + 1 l k + 1 ( x ) L_2(x)=y_{k-1}l_{k-1}(x)+y_kl_k(x)+y_{k+1}l_{k+1}(x) L2(x)=yk1lk1(x)+yklk(x)+yk+1lk+1(x),带入上式得:
L 2 ( x ) = y k − 1 ( x − x k ) ( x − x k + 1 ) ( x k − 1 − x k ) ( x k − 1 − x k + 1 ) + y k ( x − x k − 1 ) ( x − x k + 1 ) ( x k − x k − 1 ) ( x k − x k + 1 ) + y k + 1 ( x − x k − 1 ) ( x − x k ) ( x k + 1 − x k − 1 ) ( x k + 1 − x k ) L_2(x)=y_{k-1}\frac{(x-x_k)(x-x_{k+1})}{(x_{k-1}-x_k)(x_{k-1}-x_{k+1})}+y_k\frac{(x-x_{k-1})(x-x_{k+1})}{(x_k-x_{k-1})(x_{k}-x_{k+1})}+y_{k+1}\frac{(x-x_{k-1})(x-x_k)}{(x_{k+1}-x_{k-1})(x_{k+1}-x_k)} L2(x)=yk1(xk1xk)(xk1xk+1)(xxk)(xxk+1)+yk(xkxk1)(xkxk+1)(xxk1)(xxk+1)+yk+1(xk+1xk1)(xk+1xk)(xxk1)(xxk)

拉格朗日插值多项式

  • n n n次多项式 l j ( x ) ( j = 0 , 1 , ⋯   , n ) l_j(x)(j=0,1,\cdots,n) lj(x)(j=0,1,,n) n + 1 n+1 n+1个节点 x 0 < x 1 < ⋯ < x n x_0<x_1<\cdots<x_n x0<x1<<xn满足条件
    l j ( x k ) = { 1 , k = j ; 0 , k ≠ j . ( j , k = 0 , 1 , ⋯   , n ) l_j(x_k)= \begin{cases} 1,k=j; \\ 0,k \ne j. \end{cases}(j,k=0,1,\cdots,n) lj(xk)={1,k=j;0,k=j.(j,k=0,1,,n)就称这 n + 1 n+1 n+1 n n n次多项式 l 0 ( x ) , l 1 ( x ) , ⋯   , l n ( x ) l_0(x),l_1(x),\cdots,l_n(x) l0(x),l1(x),,ln(x)为节点 x 0 , x 1 , ⋯   , x n x_0,x_1,\cdots,x_n x0,x1,,xn上得 n n n次插值基函数.由此得到 n n n次插值得基函数:
    l k ( x ) = ( x − x 0 ) ⋯ ( x − x k − 1 ) ( x − x k + 1 ) ⋯ ( x − x n ) ( x k − x 0 ) ⋯ ( x k − x k − 1 ) ( x k − x k + 1 ) ⋯ ( x k − x n ) , ( k = 0 , 1 , ⋯   , n ) l_k(x)=\frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)},(k=0,1,\cdots,n) lk(x)=(xkx0)(xkxk1)(xkxk+1)(xkxn)(xx0)(xxk1)(xxk+1)(xxn),(k=0,1,,n)
    插值多项式 L n ( x ) L_n(x) Ln(x)可表示为:
    L n ( x ) = ∑ k = 0 n y k l k ( x ) L_n(x)=\sum_{k=0}^{n}y_kl_k(x) Ln(x)=k=0nyklk(x).
    l k ( x ) l_k(x) lk(x)的定义知:
    L n ( x j ) = ∑ k = 0 n y k l k ( x j ) = y j , ( j = 0 , 1 , ⋯   , n ) L_n(x_j)=\sum_{k=0}^{n}y_kl_k(x_j)=y_j,(j=0,1,\cdots,n) Ln(xj)=k=0nyklk(xj)=yj,(j=0,1,,n),形如上式 L n ( x ) L_n(x) Ln(x)称为拉格朗日(Lagrange)插值多项式.
若引入记号
ω n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) \omega_{n+1}(x)=(x-x_0)(x-x_1)\cdots(x-x_n) ωn+1(x)=(xx0)(xx1)(xxn),
ω n + 1 ′ ( x k ) = ( x k − x 0 ) ⋯ ( x k − x k − 1 ) ( x k − x k + 1 ) ⋯ ( x k − x n ) ⟹ L n ( x ) = ∑ k = 0 n y k ω n + 1 ( x ) ( x − x k ) ω n + 1 ′ ( x k ) . \omega^{\prime}_{n+1}(x_k)=(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n) \Longrightarrow L_n(x)=\sum_{k=0}^{n}y_k\frac{\omega_{n+1}(x)}{(x-x_k)\omega^{\prime}_{n+1}(x_k)}. ωn+1(xk)=(xkx0)(xkxk1)(xkxk+1)(xkxn)Ln(x)=k=0nyk(xxk)ωn+1(xk)ωn+1(x).
插值余项与误差估计
若在 [ a , b ] [a,b] [a,b]上用 L n ( x ) L_n(x) Ln(x)近似 f ( x ) f(x) f(x),则其截断误差为 R n ( x ) = f ( x ) − L n ( x ) R_n(x)=f(x)-L_n(x) Rn(x)=f(x)Ln(x),也称作插值多项式余项.
定理:设 f n ( x ) f^n(x) fn(x) [ a , b ] [a,b] [a,b]上连续, f ( n + 1 ) ( x ) f^{(n+1)}(x) f(n+1)(x) ( a , b ) (a,b) (a,b)内存在节点 a ≤ x 0 < x 1 < ⋯ < x n ≤ b a \le x_0<x_1<\cdots<x_n \le b ax0<x1<<xnb, L n ( x ) L_n(x) Ln(x)是满足条件$的插值多项式,则对任何的 x ∈ [ a , b ] x \in [a,b] x[a,b],插值余项 R n ( x ) = f ( x ) − L n ( x ) = f n + 1 ( ξ ) ( n + 1 ) ! ω n + 1 ( x ) R_n(x)=f(x)-L_n(x)=\frac{f^{n+1}(\xi)}{(n+1)!}\omega_{n+1}(x) Rn(x)=f(x)Ln(x)=(n+1)!fn+1(ξ)ωn+1(x),这里 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b)且依赖于 x x x
证明:由给定条件知 R n ( x ) R_n(x) Rn(x)在节点 x k ( k = 0 , 1 , ⋯   , n ) x_k(k=0,1,\cdots,n) xk(k=0,1,,n)上为0.即 R n ( x k ) = 0 ( k = 0 , 1 , ⋯   , n ) R_n(x_k)=0(k=0,1,\cdots,n) Rn(xk)=0(k=0,1,,n)于是
R n ( x ) = K ( x ) ( x − x 0 ) ( x − x 1 ) ⋯ ( x − x n ) = K ( x ) ω n + 1 ( x ) R_n(x)=K(x)(x-x_0)(x-x_1)\cdots(x-x_n)=K(x)\omega_{n+1}(x) Rn(x)=K(x)(xx0)(xx1)(xxn)=K(x)ωn+1(x),其中 K ( x ) K(x) K(x)是与 x x x有关的待定函数.
现把 x x x看成 [ a , b ] [a,b] [a,b]上的一个固定点,作函数
φ ( t ) = f ( t ) − L n ( t ) − K ( x ) ( t − x 0 ) ( t − x 1 ) ⋯ ( t − x n ) \varphi(t)=f(t)-L_n(t)-K(x)(t-x_0)(t-x_1)\cdots(t-x_n) φ(t)=f(t)Ln(t)K(x)(tx0)(tx1)(txn),
φ ( t ) \varphi(t) φ(t)在点 x 0 , x 1 , ⋯   , x n x_0,x_1,\cdots,x_n x0,x1,,xn x x x处均为0.根据罗尔定理,
φ ( n + 1 ) ( ξ ) = f ( n + 1 ) ( ξ ) − ( n + 1 ) ! K ( x ) = 0 \varphi^{(n+1)}(\xi)=f^{(n+1)}(\xi)-(n+1)!K(x)=0 φ(n+1)(ξ)=f(n+1)(ξ)(n+1)!K(x)=0
K ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! , ξ ∈ ( a , b ) K(x)=\frac{f^{(n+1)(\xi)}}{(n+1)!},\xi \in(a,b) K(x)=(n+1)!f(n+1)(ξ),ξ(a,b)且依赖于 x x x.
m a x a < x < b ∣ f ( n + 1 ) ( x ) ∣ = M n + 1 max_{a<x<b}|f^{(n+1)}(x)|=M_{n+1} maxa<x<bf(n+1)(x)=Mn+1,插值多项式 L n ( x ) L_n(x) Ln(x)逼近 f ( x ) f(x) f(x)的阶段误差限是
∣ R n ( x ) ∣ ≤ M n + 1 ( n + 1 ) ! ∣ ω n + 1 ( x ) ∣ |R_n(x)| \le \frac{M_{n+1}}{(n+1)!}|\omega_{n+1}(x)| Rn(x)(n+1)!Mn+1ωn+1(x).*

均差

将插值多项式表示为便于计算的形式有:
P n ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) ( x − x 1 ) + ⋯ + a n ( x − x 0 ) ⋯ ( x − x n − 1 ) P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+\cdots+a_n(x-x_0)\cdots(x-x_{n-1}) Pn(x)=a0+a1(xx0)+a2(xx0)(xx1)++an(xx0)(xxn1),其中 a 0 , a 1 , ⋯   , a n a_0,a_1,\cdots,a_n a0,a1,,an为待定系数,可由插值条件
P n ( x j ) = f j , ( j = 0 , 1 , ⋯   , n ) P_n(x_j)=f_j,(j=0,1,\cdots,n) Pn(xj)=fj,(j=0,1,,n)
x = x 0 x=x_0 x=x0时, P n ( x 0 ) = a 0 = f 0 P_n(x_0)=a_0=f_0 Pn(x0)=a0=f0
x = x 1 x=x_1 x=x1时, P n ( x 1 ) = a 0 + a 1 ( x − x 0 ) = f 1 ⟹ a 1 = f 1 − f 0 x 1 − x 0 P_n(x_1)=a_0+a_1(x-x_0)=f_1 \Longrightarrow a_1=\frac{f_1-f_0}{x_1-x_0} Pn(x1)=a0+a1(xx0)=f1a1=x1x0f1f0
x = x 2 x=x_2 x=x2时, P n ( x 2 ) = a 0 + a 1 ( x 2 − x 0 ) + a 1 ( x 2 − x 0 ) + a 2 ( x 2 − x 0 ) ( x 2 − x 1 ) = f 2 ⟹ a 2 = f 2 − f 0 x 2 − x 0 − f 1 − f 0 x 1 − x 0 x 2 − x 1 P_n(x_2)=a_0+a_1(x_2-x_0)+a_1(x_2-x_0)+a_2(x_2-x_0)(x_2-x_1)=f_2 \Longrightarrow a_2=\frac{\frac{f_2-f_0}{x_2-x_0}-\frac{f_1-f_0}{x_1-x_0}}{x_2-x_1} Pn(x2)=a0+a1(x2x0)+a1(x2x0)+a2(x2x0)(x2x1)=f2a2=x2x1x2x0f2f0x1x0f1f0
  • f [ x 0 , x k ] = f ( x k ) − f ( x 0 ) x k − x 0 f[x_0,x_k]=\frac{f(x_k)-f(x_0)}{x_k-x_0} f[x0,xk]=xkx0f(xk)f(x0)为函数 f ( x ) f(x) f(x)关于点 x 0 , x k x_0,x_k x0,xk的一阶均差. f [ x 0 , x 1 , x k ] = f [ x 0 , x k ] − f [ x 0 , x 1 ] x k − x 1 f[x_0,x_1,x_k]=\frac{f[x_0,x_k]-f[x_0,x_1]}{x_k-x_1} f[x0,x1,xk]=xkx1f[x0,xk]f[x0,x1]称为 f ( x ) f(x) f(x)的二阶均差,称
    f [ x 0 , x 1 , ⋯   , x k ] = f [ x 0 , ⋯   , x k − 2 , x k ] − f [ x 0 , x 1 , ⋯   , x k − 1 ] x k − x k − 1 f[x_0,x_1,\cdots,x_k]=\frac{f[x_0,\cdots,x_{k-2},x_k]-f[x_0,x_1,\cdots,x_{k-1}]}{x_k-x_{k-1}} f[x0,x1,,xk]=xkxk1f[x0,,xk2,xk]f[x0,x1,,xk1] f ( x ) f(x) f(x) k k k阶均差(均差也称为差商).
x k x_k xk f ( x k ) f(x_k) f(xk)一阶均差二阶均差三阶均差四阶均差
x 0 x_0 x0 f ( x 0 ) ‾ \underline{f(x_0)} f(x0)
x 1 x_1 x1 f ( x 1 ) f(x_1) f(x1) f [ x 0 , x 1 ] ‾ \underline{f[x_0,x_1]} f[x0,x1]
x 2 x_2 x2 f ( x 2 ) f(x_2) f(x2) f [ x 1 , x 2 ] f[x_1,x_2] f[x1,x2] f [ x 0 , x 1 , x 2 ] ‾ \underline{f[x_0,x_1,x_2]} f[x0,x1,x2]
x 3 x_3 x3 f ( x 3 ) f(x_3) f(x3) f [ x 2 , x 3 ] f[x_2,x_3] f[x2,x3] f [ x 1 , x 2 , x 3 ] f[x_1,x_2,x_3] f[x1,x2,x3] f [ x 0 , x 1 , x 2 , x 3 ] ‾ \underline{f[x_0,x_1,x_2,x_3]} f[x0,x1,x2,x3]
x 4 x_4 x4 f ( x 4 ) f(x_4) f(x4) f [ x 3 , x 4 ] f[x_3,x_4] f[x3,x4] f [ x 2 , x 3 , x 4 ] f[x_2,x_3,x_4] f[x2,x3,x4] f [ x 1 , x 2 , x 3 , x 4 ] f[x_1,x_2,x_3,x_4] f[x1,x2,x3,x4] f [ x 0 , x 1 , x 2 , x 3 , x 4 ] ‾ \underline{f[x_0,x_1,x_2,x_3,x_4]} f[x0,x1,x2,x3,x4]
牛顿插值公式
根据定义,把 x x x看成 [ a , b ] [a,b] [a,b]上一点,可得
f ( x ) = f ( x 0 ) + f [ x , x 0 ] ( x − x 0 ) f(x)=f(x_0)+f[x,x_0](x-x_0) f(x)=f(x0)+f[x,x0](xx0),
f [ x , x 0 ] = f [ x 0 , x 1 ] + f [ x , x 0 , x 1 ] ( x − x 1 ) , ⋯ f[x,x_0]=f[x_0,x_1]+f[x,x_0,x_1](x-x_1),\cdots f[x,x0]=f[x0,x1]+f[x,x0,x1](xx1),
f [ x , x 0 , ⋯   , x n − 1 ] = f [ x 0 , x 1 , ⋯   , x n ] + f [ x , x 0 , ⋯   , x n ] ( x − x n ) f[x,x_0,\cdots,x_{n-1}]=f[x_0,x_1,\cdots,x_n]+f[x,x_0,\cdots,x_n](x-x_n) f[x,x0,,xn1]=f[x0,x1,,xn]+f[x,x0,,xn](xxn).
将后式代入前式有:
f ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) f(x)=f(x_0)+f[x_0,x_1](x-x_0) f(x)=f(x0)+f[x0,x1](xx0)
+ f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + ⋯ +f[x_0,x_1,x_2](x-x_0)(x-x_1)+\cdots +f[x0,x1,x2](xx0)(xx1)+
+ f [ x 0 , x 1 , ⋯   , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) +f[x_0,x_1,\cdots,x_n](x-x_0)\cdots(x-x_{n-1}) +f[x0,x1,,xn](xx0)(xxn1)
+ f [ x , x 0 , ⋯   , x n ] ω n + 1 ( x ) = N n ( x ) + R n ( x ) +f[x,x_0,\cdots,x_n]\omega_{n+1}(x)=N_n(x)+R_n(x) +f[x,x0,,xn]ωn+1(x)=Nn(x)+Rn(x),其中
N n ( x ) = f ( x 0 ) f [ x 0 , x 1 ] ( x − x 0 ) N_n(x)=f(x_0)f[x_0,x_1](x-x_0) Nn(x)=f(x0)f[x0,x1](xx0)
+ f [ x 0 , x 1 , x 2 ] ( x − x 0 ) ( x − x 1 ) + ⋯ +f[x_0,x_1,x_2](x-x_0)(x-x_1)+\cdots +f[x0,x1,x2](xx0)(xx1)+
+ f [ x 0 , x 1 , ⋯   , x n ] ( x − x 0 ) ⋯ ( x − x n − 1 ) +f[x_0,x_1,\cdots,x_n](x-x_0)\cdots(x-x_{n-1}) +f[x0,x1,,xn](xx0)(xxn1),
R n ( x ) = f ( x ) − N n ( x ) = f [ x , x 0 , ⋯   , x n ] ω n + 1 ( x ) R_n(x)=f(x)-N_n(x)=f[x,x_0,\cdots,x_n]\omega_{n+1}(x) Rn(x)=f(x)Nn(x)=f[x,x0,,xn]ωn+1(x).
N n ( x ) N_n(x) Nn(x)即为牛顿均差插值多项式.
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盛者无名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值