10.HanLP实现k均值--文本聚类

本文介绍了文本聚类的概念,重点讲解了使用HanLP实现的k均值和重复二分聚类算法。k均值通过迭代优化聚类,而重复二分聚类则通过二分策略提升效率。文中以音乐网站用户聚类为例,展示了这两种算法的应用,并提及了如何自动判断聚类个数。最后,提供了聚类效果的评测及代码实现。
摘要由CSDN通过智能技术生成

笔记转载于GitHub项目https://github.com/NLP-LOVE/Introduction-NLP

10. 文本聚类

正所谓物以类聚,人以群分。人们在获取数据时需要整理,将相似的数据归档到一起,自动发现大量样本之间的相似性,这种根据相似性归档的任务称为聚类。

10.1 概述

  1. 聚类

    聚类(cluster analysis )指的是将给定对象的集合划分为不同子集的过程,目标是使得每个子集内部的元素尽量相似,不同子集间的元素尽量不相似。这些子集又被称为(cluster),一般没有交集。

    一般将聚类时簇的数量视作由使用者指定的超参数,虽然存在许多自动判断的算法,但它们往往需要人工指定其他超参数。

    根据聚类结果的结构,聚类算法也可以分为划分式(partitional )和层次化(hierarchieal两种。划分聚类的结果是一系列不相交的子集,而层次聚类的结果是一棵树, 叶子节点是元素,父节点是簇。本章主要介绍划分聚类。

  2. 文本聚类

    文本聚类指的是对文档进行聚类分析,被广泛用于文本挖掘和信息检索领域。

    文本聚类的基本流程分为特征提取和向量聚类两步, 如果能将文档表示为向量,就可以对其应用聚类算法。这种表示过程称为特征提取,而一旦将文档表示为向量,剩下的算法就与文档无关了。这种抽象思维无论是从软件工程的角度,还是从数学应用的角度都十分简洁有效。

10.2 文档的特征提取

  1. 词袋模型

    词袋(bag-of-words )是信息检索与自然语言处理中最常用的文档表示模型,它将文档想象为一个装有词语的袋子, 通过袋子中每种词语的计数等统计量将文档表示为向量。比如下面的例子:

    人 吃 鱼。
    美味 好 吃!
    

    统计词频后如下:

    人=1
    吃=2
    鱼=1
    美味=1
    好=1
    

    文档经过该词袋模型得到的向量表示为[1,2,1,1,1],这 5 个维度分别表示这 5 种词语的词频。

    一般选取训练集文档的所有词语构成一个词表,词表之外的词语称为 oov,不予考虑。一旦词表固定下来,假设大小为 N。则任何一个文档都可以通过这种方法转换为一个N维向量。词袋模型不考虑词序,也正因为这个原因,词袋模型损失了词序中蕴含的语义,比如,对于词袋模型来讲,“人吃鱼”和“鱼吃人”是一样的,这就不对了。

    不过目前工业界已经发展出很好的词向量表示方法了: word2vec/bert 模型等。

  2. 词袋中的统计指标

    词袋模型并非只是选取词频作为统计指标,而是存在许多选项。常见的统计指标如下:

    • 布尔词频: 词频非零的话截取为1,否则为0,适合长度较短的数据集
    • TF-IDF: 适合主题较少的数据集
    • 词向量: 如果词语本身也是某种向量的话,则可以将所有词语的词向量求和作为文档向量。适合处理 OOV 问题严重的数据集。
    • 词频向量: 适合主题较多的数据集

    定义由 n 个文档组成的集合为 S,定义其中第 i 个文档 di 的特征向量为 di,其公式如下:
    d i = ( TF ⁡ ( t 1 , d i ) , TF ⁡ ( t 2 , d i ) , ⋯   , TF ⁡ ( t j , d i ) , ⋯   , TF ⁡ ( t m , d i ) ) d_{i}=\left(\operatorname{TF}\left(t_{1}, d_{i}\right), \operatorname{TF}\left(t_{2}, d_{i}\right), \cdots, \operatorname{TF}\left(t_{j}, d_{i}\right), \cdots, \operatorname{TF}\left(t_{m}, d_{i}\right)\right) di=(TF(t1,di),TF(t2,di),,TF(tj,di),,TF(tm,di))
    其中 tj表示词表中第 j 种单词,m 为词表大小, TF(tj, di) 表示单词 tj 在文档 di 中的出现次数。为了处理长度不同的文档,通常将文档向量处理为单位向量,即缩放向量使得 ||d||=1。

10.3 k均值算法

一种简单实用的聚类算法是k均值算法(k-means),由Stuart Lloyd于1957年提出。该算法虽然无法保证一定能够得到最优聚类结果,但实践效果非常好。基于k均值算法衍生出许多改进算法,先介绍 k均值算法,然后推导它的一个变种。

  1. 基本原理

    形式化啊定义 k均值算法所解决的问题,给定 n 个向量 d1 到 dn,以及一个整数 k,要求找出 k 个簇 S1 到 Sk 以及各自的质心 C1 到 Ck,使得下式最小:
     minimize  I Euclidean  = ∑ r = 1 k ∑ d i ∈ S r ∥ d i − c r ∥ 2 \text { minimize } \mathcal{I}_{\text {Euclidean }}=\sum_{r=1}^{k} \sum_{d_{i} \in S_{r}}\left\|\boldsymbol{d}_{i}-\boldsymbol{c}_{r}\right\|^{2}  minimize IEuclidean =r=1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值