笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP
10. 文本聚类
正所谓物以类聚,人以群分。人们在获取数据时需要整理,将相似的数据归档到一起,自动发现大量样本之间的相似性,这种根据相似性归档的任务称为聚类。
10.1 概述
-
聚类
聚类(cluster analysis )指的是将给定对象的集合划分为不同子集的过程,目标是使得每个子集内部的元素尽量相似,不同子集间的元素尽量不相似。这些子集又被称为簇(cluster),一般没有交集。
一般将聚类时簇的数量视作由使用者指定的超参数,虽然存在许多自动判断的算法,但它们往往需要人工指定其他超参数。
根据聚类结果的结构,聚类算法也可以分为划分式(partitional )和层次化(hierarchieal两种。划分聚类的结果是一系列不相交的子集,而层次聚类的结果是一棵树, 叶子节点是元素,父节点是簇。本章主要介绍划分聚类。
-
文本聚类
文本聚类指的是对文档进行聚类分析,被广泛用于文本挖掘和信息检索领域。
文本聚类的基本流程分为特征提取和向量聚类两步, 如果能将文档表示为向量,就可以对其应用聚类算法。这种表示过程称为特征提取,而一旦将文档表示为向量,剩下的算法就与文档无关了。这种抽象思维无论是从软件工程的角度,还是从数学应用的角度都十分简洁有效。
10.2 文档的特征提取
-
词袋模型
词袋(bag-of-words )是信息检索与自然语言处理中最常用的文档表示模型,它将文档想象为一个装有词语的袋子, 通过袋子中每种词语的计数等统计量将文档表示为向量。比如下面的例子:
人 吃 鱼。 美味 好 吃!
统计词频后如下:
人=1 吃=2 鱼=1 美味=1 好=1
文档经过该词袋模型得到的向量表示为[1,2,1,1,1],这 5 个维度分别表示这 5 种词语的词频。
一般选取训练集文档的所有词语构成一个词表,词表之外的词语称为 oov,不予考虑。一旦词表固定下来,假设大小为 N。则任何一个文档都可以通过这种方法转换为一个N维向量。词袋模型不考虑词序,也正因为这个原因,词袋模型损失了词序中蕴含的语义,比如,对于词袋模型来讲,“人吃鱼”和“鱼吃人”是一样的,这就不对了。
不过目前工业界已经发展出很好的词向量表示方法了: word2vec/bert 模型等。
-
词袋中的统计指标
词袋模型并非只是选取词频作为统计指标,而是存在许多选项。常见的统计指标如下:
- 布尔词频: 词频非零的话截取为1,否则为0,适合长度较短的数据集
- TF-IDF: 适合主题较少的数据集
- 词向量: 如果词语本身也是某种向量的话,则可以将所有词语的词向量求和作为文档向量。适合处理 OOV 问题严重的数据集。
- 词频向量: 适合主题较多的数据集
定义由 n 个文档组成的集合为 S,定义其中第 i 个文档 di 的特征向量为 di,其公式如下:
d i = ( TF ( t 1 , d i ) , TF ( t 2 , d i ) , ⋯ , TF ( t j , d i ) , ⋯ , TF ( t m , d i ) ) d_{i}=\left(\operatorname{TF}\left(t_{1}, d_{i}\right), \operatorname{TF}\left(t_{2}, d_{i}\right), \cdots, \operatorname{TF}\left(t_{j}, d_{i}\right), \cdots, \operatorname{TF}\left(t_{m}, d_{i}\right)\right) di=(TF(t1,di),TF(t2,di),⋯,TF(tj,di),⋯,TF(tm,di))
其中 tj表示词表中第 j 种单词,m 为词表大小, TF(tj, di) 表示单词 tj 在文档 di 中的出现次数。为了处理长度不同的文档,通常将文档向量处理为单位向量,即缩放向量使得 ||d||=1。
10.3 k均值算法
一种简单实用的聚类算法是k均值算法(k-means),由Stuart Lloyd于1957年提出。该算法虽然无法保证一定能够得到最优聚类结果,但实践效果非常好。基于k均值算法衍生出许多改进算法,先介绍 k均值算法,然后推导它的一个变种。
-
基本原理
形式化啊定义 k均值算法所解决的问题,给定 n 个向量 d1 到 dn,以及一个整数 k,要求找出 k 个簇 S1 到 Sk 以及各自的质心 C1 到 Ck,使得下式最小:
minimize I Euclidean = ∑ r = 1 k ∑ d i ∈ S r ∥ d i − c r ∥ 2 \text { minimize } \mathcal{I}_{\text {Euclidean }}=\sum_{r=1}^{k} \sum_{d_{i} \in S_{r}}\left\|\boldsymbol{d}_{i}-\boldsymbol{c}_{r}\right\|^{2} minimize IEuclidean =r=1∑