NLP从词袋到Word2Vec的文本表示

本文介绍了NLP中文本表示的发展,从离散表示如One-hot、词袋模型、TF-IDF和n-gram模型,到分布式表示的共现矩阵、神经网络模型如NNLM和Word2Vec,讨论了各种方法的优缺点及解决的挑战。
摘要由CSDN通过智能技术生成

在NLP(自然语言处理)领域,文本表示是第一步,也是很重要的一步,通俗来说就是把人类的语言符号转化为机器能够进行计算的数字,因为普通的文本语言机器是看不懂的,必须通过转化来表征对应文本。早期是基于规则的方法进行转化,而现代的方法是基于统计机器学习的方法。

数据决定了机器学习的上限,而算法只是尽可能逼近这个上限,在本文中数据指的就是文本表示,所以,弄懂文本表示的发展历程,对于NLP学习者来说是必不可少的。接下来开始我们的发展历程。文本表示分为离散表示分布式表示

1.离散表示

1.1 One-hot表示

One-hot简称读热向量编码,也是特征工程中最常用的方法。其步骤如下:

  1. 构造文本分词后的字典,每个分词是一个比特值,比特值为0或者1。
  2. 每个分词的文本表示为该分词的比特位为1,其余位为0的矩阵表示。

例如:John likes to watch movies. Mary likes too

John also likes to watch football games.

以上两句可以构造一个词典,**{“John”: 1, “likes”: 2, “to”: 3, “watch”: 4, “movies”: 5, “also”: 6, “football”: 7, “games”: 8, “Mary”: 9, “too”: 10} **

每个词典索引对应着比特位。那么利用One-hot表示为:

**John: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] **

likes: [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] …等等,以此类推。

One-hot表示文本信息的缺点

  • 随着语料库的增加,数据特征的维度会越来越大,产生一个维度很高,又很稀疏的矩阵。
  • 这种表示方法的分词顺序和在句子中的顺序是无关的,不能保留词与词之间的关系信息。

1.2 词袋模型

词袋模型(Bag-of-words model),像是句子或是文件这样的文字可以用一个袋子装着这些词的方式表现,这种表现方式不考虑文法以及词的顺序。

文档的向量表示可以直接将各词的词向量表示加和。例如:

John likes to watch movies. Mary likes too

John also likes to watch football games.

以上两句可以构造一个词典,**{“John”: 1, “likes”: 2, “to”: 3, “watch”: 4, “movies”: 5, “also”: 6, “football”: 7, “games”: 8, “Mary”: 9, “too”: 10} **

那么第一句的向量表示为:[1,2,1,1,1,0,0,0,1,1],其中的2表示likes在该句中出现了2次,依次类推。

词袋模型同样有一下缺点

  • 词向量化后,词与词之间是有大小关系的,不一定词出现的越多,权重越大。
  • 词与词之间是没有顺序关系的。

1.3 TF-IDF

TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF意思是词频(Term Frequency),IDF意思是逆文本频率指数(Inverse Document Frequency)。

字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。一个词语在一篇文章中出现次数越多, 同时在所有文档中出现次数越少, 越能够代表该文章。

T F w = 在 某 一 类 中 词 条 w 出 现 的 次 数 该 类 中 所 有 的 词 条 数 目 TF_w=\frac{在某一类中词条w出现的次数}{该类中所有的词条数目} T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值