给定一个长度为 N 的数列,A1,A2,…AN,如果其中一段连续的子序列 Ai,Ai+1,…Aj 之和是 K 的倍数,我们就称这个区间 [i,j] 是 K 倍区间。
你能求出数列中总共有多少个 K 倍区间吗?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行包含一个整数 Ai。
输出格式
输出一个整数,代表 K 倍区间的数目。
数据范围
1 ≤ N,K ≤ 100000
1 ≤ Ai ≤ 100000
输入样例:
5 2
1
2
3
4
5
输出样例:
6
前缀和: 如果a[i]和a[j]( i > j) mod k 是相同的,那么就说明区间[j,i]的区间和就是数字k的倍数。
那么还有一点: 上面的思路是i能与在它之前的且有着mod k的点j构成一个区间,区间[j,i]的和是数字的k倍,但还有一点要注意的,如果mod k 是等于0的话,那么就不能只加在它之前有着相同mod k 的点的个数,从开头到它自己也是一个答案。
时间复杂度: O(n)
#include<iostream>
#include<map>
using namespace std;
long long s[100010];
long long cnt;
map<long,long> m;
int main(){
int n,k,t;
cin>>n>>k;
for(int i = 1; i <= n; ++i){
cin >> t;
s[i] = s[i - 1] + t;
long long mod = s[i] % k;
cnt += m[mod];
m[mod]++;
}
cout<<cnt + m[0]<<endl;
// 因为之前余数不是0的都是算上它前面的出现过多少次的这种余数,但是当余数是0的时候,它本身(从开头到这个元素)就是一个答案
return 0;
}