pytorch指定GPU后仍旧使用GPU0的解决方法

我在训练模型的时候,已经指定了使用GPU5、6进行训练,然而pytorch却强行在GPU0里占用100多M的空间,但是刚好GPU0被别人占满了,导致一直是CUDA:out of memory的状态.
这个问题跟为什么Pytorch死活要用第0块显卡–我和pytorch的恩怨情仇非常像,但是我用他的方法根本不管用,感觉我的情况跟他的应该是不相同的,所以我只能自己找问题。

我根据错误提示,发现溢出的语句是加载预训练模型参数的地方:

rnet_checkpoint = torch.load('../s_resnet50_0.25_0.5_0.75_1.0.pt')['model']
rnet.load_state_dict(rnet_checkpoint)

原本我想的是,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值