讲真这道题我感觉可以暴力
本篇博客的意思是让我们理解一下主席树板子的具体实现细节
。。。其实就是主席树乱讲。。。。
表打我这个蒟蒻 > <
又回来说一嘴
下面代码的注释更新了
主席树实际上就是在原有线段树的基础上增加被update的部分 这部分不想普通线段树一样把原来的信息覆盖了
而是原来的信息还在存储空间内 而新的信息则是如下表示的
未更新的子树:新的线段树直接连上去(不用画多颗线段树,这就是静态主席树的节省空间思想)
更新的子树:增加新的存储空间
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100005;
struct node
{
int L,R;
int sum;
}tree[maxn*20];
struct Value
{
int x;
int id;
}value[maxn];
bool cmp(Value a,Value b)
{
return a.x<b.x;
}
int root[maxn];
int rank[maxn];
int cnt;
void updata(int &rt,int num,int l,int r)
{
tree[cnt++]=tree[rt];//copy 如果rt是根节点 那么将上一个根节点的元素复制一份(main函数中的root‘i’=root‘i-1’) 在本根节点再做更新
rt=cnt-1;
/*
类似于:
cnt作为新节点 复制的内容是上一级线段树的同一位置的内容 然后把它更新一下 为啥要复制呀?因为我还要前缀的信息啊
然后继续跑 没有修改的地方由于复制过来了所以他们的树链还是连着没有修改过的部分
cnt是新增节点部分
*/
tree[rt].sum++;
if(r==l) return;
int mid=(l+r)>>1;
if(num<=mid) updata(tree[rt].L,num,l,mid);
else updata(tree[rt].R,num,mid+1,r);
}
int query(int i,int j,int k,int l,int r)
{
int mid=(l+r)>>1;
int left_sum=tree[tree[j].L].sum-tree[tree[i].L].sum;//区间左边元素个数 左区间是由之前继承过来的
if(l==r) return l;
if(k<=left_sum) return query(tree[i].L,tree[j].L,k,l,mid);//当左边元素个数多于k个 那第k小的就在左边
else return query(tree[i].R,tree[j].R,k-left_sum,mid+1,r);
}
int main()
{
int n,m;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&value[i].x);
value[i].id=i;
}
sort(value+1,value+1+n,cmp);
for(int i=1;i<=n;i++)
{
rank[value[i].id]=i;
}
cnt=1;
root[0]=0;
tree[0].L=tree[0].R=tree[0].sum=0;
for(int i=1;i<=n;i++)
{
root[i]=root[i-1];
updata(root[i],rank[i],1,n);
}
cout<<"cnt"<<cnt<<" cnt mod"<<cnt/3<<endl;
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
int x,y,k;
scanf("%d%d%d",&x,&y,&k);
k=y-x+1-k+1;
int ans=value[query(root[x-1],root[y],k,1,n)].x;
printf("%d\n",ans);
}
}