uva12169 扩展欧几里得

x2 = (a * x1 + b) % 10001;

x3 = (a * x2 + b) % 10001;

x3 = (a * (a * x1 + b) % 10001 + b ) % 10001

x3 = (a * (a * x1 + b) + b) % 10001

x3 + 10001 * k = a * a * x1 + (a + 1) * b

x3 - a * a * x1 = (a + 1) * b + 10001 * (-k)
推导到最后一波 可以看出 

a是我们枚举的算已知量 x1 x3 已知

所以把x3 - a * a * x1看作c

b看作x  -k看作y

通过扩展欧几里得算法求出b  求出来的-k是没作用的 就放着

然后由递推式求出答案序列

扩展欧几里得的算法详解我博客里有哦

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e4+10;
const int mod=10001;
ll x[maxn];

ll exgcd(ll a,ll b,ll &x,ll &y)
{
	ll ans,t;
	if(b==0) //gcd border
	{
		x=1;
		y=0;
		return a;// return final gcd
	}
	ans=exgcd(b,a%b,x,y);// this value via the final gcd
	t=x;
	x=y;
	y=t-(a/b)*y;
	return ans;
}
 
int main()
{
	int t;
	scanf("%d",&t);
	for(int i=1;i<2*t;i+=2)
	{
		scanf("%lld",&x[i]);
	}
	//for(int i=1;i<=2*t;i++)
	//cout<<x[i]<<' ';
	//cout<<endl;
	for(ll a=0;;a++)
	{
		ll c=x[3]-a*a*x[1];
		ll b,y;
		ll gc=exgcd(a+1,mod,b,y);//y =  -k
		//cout<<t<<"		"<<c<<endl;
		if(c%gc) continue;
		b=b*c/gc;
		bool flag=1;
		for(int i=2;i<=2*t;i++)
		{
			if(i&1)
			{
				if(x[i] != ((a*x[i-1]+b)%mod))
				{
					flag=0;
					break;
				}			
			}
			else
			{
				x[i]=(a*x[i-1]+b)%mod;
			}
		}
		if(flag==1) break;
	}
	for(int i=2;i<=2*t;i+=2)
	{
		printf("%lld\n",x[i]);
	}
	return 0;
} 
 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值