将一堆正整数分为2组,要求2组的和相差最小。
例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的。
01背包 将每个数字的大小当作重量和价值
设总和为sum
背包最大容量开为sum/2
为嘛?
因为这一组数和另一组数的差要最小 就需要本组数的和需要逼近sum/2 ,所以背包最大容量为sum/2保证了本组数的大小不超过但逼近sum/2。
so 在复述一下dp【sum/2】的意思:本组数的大小不超过但逼近sum/2
由于动态规划的性质 dp【sum/2】最优 是由dp【sum/2-a【i】】最优推出来的 而dp【sum/2-a【i】】最优是有更前面的最优状态推出来的,保证了最优性。
#include<bits/stdc++.h>
using namespace std;
const int maxn=10010;
int dp[maxn];
int a[105];
int main()
{
int n,sum=0,halfsum;
scanf("%d",&n);
for(int i=0;i<n;i++) {scanf("%d",&a[i]); sum+=a[i];}
halfsum=sum/2;
for(int i=0;i<n;++i)
{
for(int j=halfsum;j>=a[i];j--)
dp[j]=max(dp[j-a[i]]+a[i],dp[j]);
//for(int k=0;k<=halfsum;k++)
//printf("%d, ",dp[k]);
//printf("\n");
}
int ans=sum-(2*dp[halfsum]);
printf("%d\n",(ans>0?ans:-ans));
return 0;
}