数据类型及数组创建
01 常量
numpy.nan
-
nan = NaN = NAN,注意:两个
numpy.nan
是不相等的! -
numpy.isnan(x,*args,**kwargs)
用来检测空值,返回bool值向量
numpy.inf
-
表示正无穷大,Inf = inf =infty = Infinity = PINF
print(0 * np.nan) print(np.nan == np.nan) print(np.inf > np.nan) print(np.nan - np.nan) print(0.3 == 3 * 0.1) # nan # False # False # nan # False # ⭐由于浮点数在机器里都是二进制运算,十进制的小数转化成二进制可能是无穷的,但机器只能取有穷计算完以后恢复成十进制就会有偏差 # 所以对于计算得到的浮点数不要用 == 来进行判断,无法得到十进制意义上的绝对相等
numpy.pi
numpy.e
- 自然常数
02 数据类型
常见数据类型
bool、int、float、str是python原生的数据类型,为了加以区分,在numpy中这些数据类型名称末尾加了“_”
。同时由于科学计算通常需要更多的控制,所以numpy将数据类型进行了扩展。
下表列举了常用numpy基本类型:
类型 | 备注 | 说明 |
---|---|---|
bool_ = bool8 | 8位 | 布尔类型 |
int8 = byte | 8位 | 整型 |
int16 = short | 16位 | 整型 |
int32 = intc | 32位 | 整型 |
int_ = int64 = long = int0 = intp | 64位 | 整型 |
uint8 = ubyte | 8位 | 无符号整型 |
uint16 = ushort | 16位 | 无符号整型 |
uint32 = uintc | 32位 | 无符号整型 |
uint64 = uintp = uint0 = uint | 64位 | 无符号整型 |
float16 = half | 16位 | 浮点型 |
float32 = single | 32位 | 浮点型 |
float_ = float64 = double | 64位 | 浮点型 |
str_ = unicode_ = str0 = unicode | Unicode 字符串 | |
datetime64 | 日期时间类型 | |
timedelta64 | 表示两个时间之间的间隔 |
创建数据类型
numpy的数据类型实际上是dtype对象的实例(python里面的原生数据类型也是)
每个内建类型都有一个唯一定义它的字符代码,如下:
字符 | 对应类型 | 备注 |
---|---|---|
b | boolean | ‘b1’ |
i | signed integer | ‘i1’, ‘i2’, ‘i4’, ‘i8’ |
u | unsigned integer | ‘u1’, ‘u2’ ,‘u4’ ,‘u8’ |
f | floating-point | ‘f2’, ‘f4’, ‘f8’ |
c | complex floating-point | |
m | timedelta64 | 表示两个时间之间的间隔 |
M | datetime64 | 日期时间类型 |
O | object | |
S | (byte-)string | S3表示长度为3的字符串 |
U | Unicode | Unicode 字符串 |
V | void |
数据类型溢出
Python 的浮点数通常是64位浮点数,几乎等同于 np.float64
。
NumPy和Python整数类型的行为在整数溢出方面存在显着差异,与 NumPy 不同,Python 的int
是灵活的。这意味着Python整数可以扩展以容纳任何整数并且不会溢出。
numpy.int16
最小值为-32768,最大值为32767
numpy.int32
最小值为-2147483648,最大值为2147483647
numpy.float16
最小值为-65500.0,最大值为65500.0,精度为0.000977
numpy.float32
最小值为-3.4028235e+38,最大值为3.4028235e+38,精度为1.1920929e-07
03 时间日期和时间增量
datetime64
在 numpy 中,我们很方便的将字符串转换成时间日期类型 datetime64
(datetime
已被 python 包含的日期时间库所占用)。
datatime64
是带单位的日期时间类型,其单位如下:
日期单位 | 代码含义 | 时间单位 | 代码含义 |
---|---|---|---|
Y | 年 | h | 小时 |
M | 月 | m | 分钟 |
W | 周 | s | 秒 |
D | 天 | ms | 毫秒 |
- | - | us | 微秒 |
- | - | ns | 纳秒 |
- | - | ps | 皮秒 |
- | - | fs | 飞秒 |
- | - | as | 阿托秒 |
- 从字符串创建 datetime64 类型时,默认情况下,numpy 会根据字符串自动选择对应的单位。
import numpy as np
a = np.datetime64('2020-03-01')
print(a, a.dtype) # 2020-03-01 datetime64[D]
a = np.datetime64('2020-03')
print(a, a.dtype) # 2020-03 datetime64[M]
a = np.datetime64('2020-03-08 20:00:05')
print(a, a.dtype) # 2020-03-08T20:00:05 datetime64[s]
a = np.datetime64('2020-03-08 20:00')
print(a, a.dtype) # 2020-03-08T20:00 datetime64[m]
a = np.datetime64('2020-03-08 20')
print(a, a.dtype) # 2020-03-08T20 datetime64[h]
- 从字符串创建
datetime64
类型时,可以强制指定使用的单位。
import numpy as np
a = np.datetime64('2020-03', 'D')
print(a, a.dtype) # 2020-03-01 datetime64[D]
a = np.datetime64('2020-03', 'Y')
print(a, a.dtype) # 2020 datetime64[Y]
print(np.datetime64('2020-03') == np.datetime64('2020-03-01')) # True
print(np.datetime64('2020-03') == np.datetime64('2020-03-02')) #False
- 从字符串创建
datetime64
数组时,如果单位不统一,则一律转化成其中最小的单位。 - 使用
np.arange()
创建datetime64
数组,用于生成日期范围。
datetime64和timedelta64运算
- timedelta64 表示两个 datetime64 之间的差。timedelta64 也是带单位的,并且和相减运算中的两个 datetime64 中的较小的单位保持一致。
- 生成 timedelta64时,要注意年(‘Y’)和月(‘M’)这两个单位无法和其它单位进行运算(一年有几天?一个月有几个小时?这些都是不确定的)。
- timedelta64 的运算。
import numpy as np
a = np.timedelta64(1, 'Y')
b = np.timedelta64(6, 'M')
c = np.timedelta64(1, 'W')
d = np.timedelta64(1, 'D'