numpy学习
rightgoon
这个作者很懒,什么都没留下…
展开
-
实践大作业 (2)
导入鸢尾属植物数据集,保持文本不变import numpy as npiris_type = np.dtype({ "names":["sepallength","sepalwidth","petallength","petalwidth","species"], "formats":["f8","f8","f8","f8","U30"]})iris_data = np.loadtxt("iris.csv", dtype=iris_type,delimiter=',',skipro.原创 2020-12-02 13:22:37 · 396 阅读 · 1 评论 -
2020-11-29
task 9 线性代数矩阵运算函数注释矩阵乘法numpy.dot()特征值numpy.linalg.eigvals()特征向量a,b = numpy.linalg.eig()返回特征值和特征向量奇异值分解(SVD)u, s, v =numpy.linalg.svd(a,<br />full_matrices=True,<br />compute_uv=True,<br />hermitian=False)- a原创 2020-11-29 22:02:09 · 101 阅读 · 0 评论 -
2020-11-27
统计相关codenote最小值numpy.amin(a[, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue, where=np._NoValue])- axis=None,取array所有元素的最小- axis=0,取每列最小- axis=1,取每行最小最大值numpy.amax(a[, axis=None, out=None, keepdims=np._NoValue, initial=np.原创 2020-11-27 10:59:47 · 93 阅读 · 0 评论 -
task 7 随机抽样
task 7 随机抽样numpy.random模块里有一些常用概率分布的抽样函数,比如二项分布、正态分布、泊松分布设定随机种子numpy.random.seed()如果不设置,则系统根据时间来自己选择这个值二项分布numpy.random.binomial(n, p, size=None)抽样函数,返回采样值size表示采样次数scipy.stats.binom.rvs(n, p, size)同上,返回一个numpy.ndarrayscipy.stats.binom.p原创 2020-11-25 00:14:31 · 122 阅读 · 0 评论 -
task 6 输入和输出
task 6 输入和输出numpy二进制文件两种类型npy格式:以二进制的方式存储文件,在二进制文件第一行以文本形式保存了数据的元信息(ndim,dtype,shape等),可以用二进制工具查看内容。保存一个数组。npz格式:以压缩打包的方式存储文件,可以用压缩软件解压。可以同时保存多个数组。两个储存函数numpy.save(file, arr, allow_pickle=True, fix_imports=True) Save an array to a binary file in原创 2020-11-23 18:54:27 · 256 阅读 · 0 评论 -
排序,搜索和计数速查表
排序搜索集合速查表排序numpy.sort(a[, axis=-1, kind='quicksort', order=None]) Return a sorted copy of an array.axis:排序沿数组的(轴)方向,0表示按行,1表示按列,None表示展开来排序,默认为-1,表示沿最后的轴排序。kind:排序的算法,提供了快排’quicksort’、混排’mergesort’、堆排’heapsort’, 默认为‘quicksort’。order:排序的字段名,可指定字段排序,原创 2020-10-31 23:27:00 · 104 阅读 · 0 评论 -
task04 数学函数和逻辑函数
速查表数学函数和逻辑函数向量化和广播(broadcasting)数学函数算术运算三角函数指数和对数加法函数和乘法函数累乘差分四舍五入向上向下取整裁剪绝对值示性函数逻辑函数真值函数非空测试逻辑运算大小比较比较两个数组是否可以认为相等数学函数和逻辑函数向量化和广播(broadcasting)不同形状(shape)的数组原则上不可以直接进行算术运算,但broadcasting机制可以使得满足一些条件的数组直接进行算术运算,使得他们具有兼容的形状。 Broadcasting需要满足的条件:两个数组的各维度兼容原创 2020-10-28 15:59:14 · 291 阅读 · 0 评论 -
note task3 数组操作
这里写目录标题数组操作更改形状数组转置更改维度数组组合数组拆分数组平铺添加和删除元素数组操作更改形状numpy.ndarray.shapeimport numpy as npx = np.array(np.arange(8))print('x is ', x,'\nx\'s shape is ', x.shape)x.shape = [2,4]print(x)x is [0 1 2 3 4 5 6 7] x's shape is (8,)[[0 1 2 3] [4 5 6原创 2020-10-24 19:25:11 · 131 阅读 · 0 评论 -
2020-10-21
task02 索引副本和视图⭐在numpy中,所有赋值运算(eg.=)不会为数组和数组中的任何元素创建副本**!!!**要用numpy.ndarray.copy()函数才能创建一个副本。import numpy as npx = np.array([1, 2, 3, 4, 5, 6, 7, 8])y = xy[0] = -1print(x)# [-1 2 3 4 5 6 7 8]print(y)# [-1 2 3 4 5 6 7 8]x = np.arr原创 2020-10-21 20:26:35 · 126 阅读 · 0 评论 -
task01数据类型及数组创建
数据类型及数组创建01 常量numpy.nannan = NaN = NAN,注意:两个numpy.nan是不相等的!numpy.isnan(x,*args,**kwargs)用来检测空值,返回bool值向量numpy.inf表示正无穷大,Inf = inf =infty = Infinity = PINFprint(0 * np.nan)print(np.nan == np.nan)print(np.inf > np.nan)print(np.nan - np.n原创 2020-10-20 10:21:36 · 273 阅读 · 0 评论