TensorRT教程11:使用C++API部署推理(重点)

使用C++API部署推理(重点)

step1:创建runtime

step2:反序列化创建engine

step3:创建context

step4:获取输入输出索引

step5:创建buffers

step6:为输入输出开辟GPU显存

step7:创建cuda流

step8:从CPU到GPU----拷贝input数据

step9:异步推理

step10:从GPU到CPU----拷贝output数据

step10:同步cuda流

step11:释放资源

//step1:创建runtime
IRuntime* runtime = createInferRuntime(gLogger);
assert(runtime != nullptr);
//step2:反序列化创建engine
ICudaEngine* engine = runtime->deserializeCudaEngine(modelData, modelSize, nullptr);
assert(engine != nullptr);
// 打印绑定输入输出
printf("Bindings after deserializing:\n");
for (int bi = 0; bi < engine->getNbBindings(); bi++) 
{
    if (engine->bindingIsInput(bi) == true) 
    {
        printf("Binding %d (%s): Input.\n",  bi, engine->getBindingName(bi));
    } 
    else 
    {
        printf("Binding %d (%s): Output.\n", bi, engine->getBindingName(bi));
    }
}



//step3:创建context,创建一些空间来存储中间激活值
IExecutionContext *context = engine->createExecutionContext();
assert(context != nullptr);

//step4:根据输入输出blob名字获取输入输出索引
int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);
//step5:使用这些索引,创建buffers指向 GPU 上输入和输出缓冲区
void* buffers[2];
buffers[inputIndex] = inputBuffer;
buffers[outputIndex] = outputBuffer;
//step6:为输入输出开辟GPU显存
CUDA_CHECK(cudaMalloc(&buffers[inputIndex], batchSize * inputDim.c() * inputDim.h() * inputDim.w() * sizeof(float)));
CUDA_CHECK(cudaMalloc(&buffers[outputIndex], batchSize * outputDim.c() * outputDim.h() * outputDim.w() * sizeof(float)));
//step6:创建cuda流
cudaStream_t stream;
CUDA_CHECK(cudaStreamCreate(&stream));
//step7:从CPU到GPU----拷贝input数据
CUDA_CHECK(cudaMemcpyAsync(buffers[inputIndex],//显存上的存储区域,用于存放输入数据
                           input, //读入内存中的数据
                           batchSize * inputDim.c() * inputDim.h() * inputDim.w() * sizeof(float),
                           cudaMemcpyHostToDevice, 
                           stream));
//step8:异步推理
context->enqueueV2(buffers, stream, nullptr);

//step9:从GPU到CPU----拷贝output数据
CUDA_CHECK(cudaMemcpyAsync(output,//是内存中的数据
                           buffers[outputIndex],//是显存中的存储区,存放模型输出
                           batchSize * outputDim.c() * outputDim.h() * outputDim.w() * sizeof(float),
                           cudaMemcpyDeviceToHost,
                           stream));
//step10:同步cuda流
CUDA_CHECK(cudaStreamSynchronize(stream));
//step11:释放资源
cudaStreamDestroy(stream);
context->destroy();
engine->destroy();
runtime->destroy();
CUDA_CHECK(cudaFree(buffers[inputIndex]));
CUDA_CHECK(cudaFree(buffers[outputIndex]));
  • 10
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
### 回答1: TensorRT是一个高性能的深度学习推理库,可以帮助您在 NVIDIA GPU 上加速深度学习推理。要在C++部署YOLOv5,您需要进行以下步骤: 1.安装 TensorRT:在系统上安装 TensorRT 库和配套的驱动程序。 2.导出权重:在训练模型之后,您需要将权重导出到一个可以被 TensorRT 读取的格式,如 ONNX 或 TensorRT 格式。 3.构建网络:使用 TensorRTC++ API 构建网络,并将权重加载到网络中。 4.配置推理:设置网络的运行参数,如批量大小和精度。 5.运行推理使用 TensorRT 运行网络,并得到结果。 6.解码结果:最后,您需要对结果进行解码,以便更好地理解结果。 希望这能帮到你。 ### 回答2: TensorRT是一个高性能的推理引擎,可以加速神经网络模型的推理,而yolov5 c是一种基于深度学习的物体检测模型,因此使用TensorRT部署yolov5 c可以提高模型的运行速度和效率。 下面是TensorRT部署yolov5 c的步骤: 1. 模型转换:将yolov5的模型文件转换为TensorRT可处理的格式。这可以使用yolov5_offical代码库中的convert.py脚本来完成。通过在终端中运行该脚本,可以生成一个TensorRT可识别的Engine文件。 2. Engine文件编写:将生成的Engine文件加载到CUDA内存中,并在CPU上分配空间。 3. 归一化和预处理:对于输入图片,进行归一化和预处理,使其适合模型的输入。 4. 推理:在CPU上运行推理,得出检测结果并处理。 5. 结果可视化:将推理结果可视化,可以使用OpenCV等工具库来实现。 TensorRT部署yolov5 c可以让模型实现更快的推理速度,同时提供高效能的计算功能,进一步提高了模型在实际应用中的作用。使用TensorRT,可以有效缩短模型推理的时间,提高应用的实时性和响应速度。 ### 回答3: TensorRT是一种针对机器学习模型的高性能推理引擎,它可以通过优化、量化、融合等技术将模型的推理速度提升数十倍。在使用TensorRT部署yolov5 c时,可以按照以下步骤进行: 1. 准备环境:首先需要安装yolov5 c和TensorRT,并安装CMake辅助构建工具。同时还需要下载yolov5的配置文件和权重文件。 2. 将模型转换为TensorRT引擎:使用TensorRT提供的API,将训练好的yolov5 c模型转换为TensorRT引擎。这个过程主要包含以下几个步骤: (1)通过TensorRT提供的Builder API创建一个Builder对象,用于定义TensorRT引擎的配置。 (2)将yolov5 c模型加载进来,通过Parser API解析为TensorRT的网络描述对象。 (3)使用Builder对象定义TensorRT引擎,包括设置精度、批大小、推理模式等。 (4)转换为TensorRT引擎,生成对应的.engine文件,以便进行后续推理。 3. 进行推理使用生成的TensorRT引擎文件,进行推理操作。这个过程主要包含以下几个步骤: (1)创建一个执行上下文,用于对输入数据进行处理和输出结果。 (2)将输入数据加载到TensorRT引擎中,通过execute API进行推理。 (3)获取输出结果,将其解析为目标检测的结果,包括物体类别、位置和置信度等。 4. 部署到目标设备:最后根据实际应用需要,将部署好的yolov5 c模型和TensorRT引擎部署到目标设备上,进行实时目标检测。 总之,TensorRT部署yolov5 c可以较大的提高其推理性能,使得其在实际应用场景中更加高效、准确和实时。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米斯特龙_ZXL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值