LeetCode--最长有效括号匹配(动态规划,栈)

本文介绍了如何使用动态规划和栈解决LeetCode上的最长有效括号匹配问题。通过动态规划思路,从字符串结尾开始处理,结合栈的数据结构,解析括号串并找到最长的有效括号子串。示例和详细解题过程揭示了如何处理不同情况,包括当前字符为左括号和右括号时的策略。

最长有效括号
给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。

示例 1:

输入: “(()”
输出: 2
解释: 最长有效括号子串为 “()”
示例 2:

输入: “)()())”
输出: 4
解释: 最长有效括号子串为 “()()”

动态规划

动态规划思想:将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息。在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。依次解决各子问题,最后一个子问题就是初始问题的解。

当前为左括号

需用到辅助数组d[s.length()],表示从当前字符开始,到字符串结尾的最长有效括号子串长度(当前字符需为有效括号子串的第一个字符)

解题思路:从字符串结尾往前处理,求辅助数组d[]

当前字符下标为index,若当前字符为左括号’(’,判断index+1+d[index+1]位置的字符是否为右括号’)’,若为右括号,则d[index] = d[index+1]+2,并且判断index+1+d[index+1]+1位置的元素是否存在,若存在,则d[index] += d[index+1+d[index+1]+1](解决上述两个有效括号子串直接相邻的情况)

/*
 * @Author liuhaidong 
 * @Description  当前为左括号
 * @Date 17:05 2019/9/17 0017
 **/
public int longestValidParentheses(String s) {
    if(null == s) return 0;

    int len = s.length(), max = 0;
    int[] d = new int[len];

    for(int index = len-2; index >= 0; index--){
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

haikuotiankongdong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值