机器学习实践(一)

本文介绍了机器学习实践中数据处理的关键步骤,包括数据导入、描述性统计、数据可视化,如直方图、密度图和散点图。接着讲解了数据预处理,涉及数据尺度调整、正态化、标准化和二值化。最后提到了特征选择方法,如单变量特征选择和主要成分分析,并预告了接下来的模型选择和评价内容。
摘要由CSDN通过智能技术生成

数据导入

(1)python标准类库导入
(2)用numpy模块导入
(3)用pandas导入

from pandas import read_csv
filename='pima-indians-diabetes.csv'
names=['preg','plas','pres','skin','test','mass','pedi','age','class']
data=read_csv(filename,names=names)

数据描述

(1)描述性统计

from pandas import set_option
set_option('precision',4)
print(data.describe())

数据的各个指标
(2)数据的分组分布

print(data.groupby('class').si
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值