机器学习实训(1)——概览(补充)

这篇博客探讨了机器学习的基本定义,强调了它在解决复杂问题中的应用。介绍了被标记的训练数据集,以及监督式学习(如回归与分类)和无监督式学习(如聚类)的任务。此外,区分了模型参数与学习算法的超参数,并概述了基于模型的学习算法的工作原理。测试集和验证集的角色以及交叉验证的重要性也在文中得到阐述。
摘要由CSDN通过智能技术生成
  • 我们可以怎么定义机器学习?

        机器学习是一门能够让系统从数据中学习的计算机科学。

  • 机器学习在哪些问题上表现突出?

        不存在已知算法解决方案的复杂问题,需要大量手动调整或是规则列表超长的问题,创建可以适应环境波动的系统,帮助我们学习。

  • 什么是被标记的训练数据集?

        包含每个实例所期望的解决方案的训练集。

  • 常见的监督式和无监督式学习任务?

        监督式:回归与分类;无监督式:聚类、可视化、降维和关联规则学习。

  • 模型参数与学习算法的超参数有什么区别?

        模型有一个或多个参数,这些参数决定了模型对新的给定实例会做出怎样的预测。学习算法试图找到这些参数的最佳值,使得该模型能够很好地泛化至新实例。超参数是学习算法本身的参数,不是模型参数。

  • 基于模型的学习算法搜索的是什么?最常用的策略以及如何预测?

        基于模型的学习算法搜索的是使模型泛化最佳的模型参数值。通常通过使成本函数最小化来训练这样的系统,成本函数衡量的是系统对训练数据的预测有多坏,如果模型有正则化,则再加上一个对模型复杂度的惩罚。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值