知识点
- numpy文件的保存和读取
numpy.save(file, arr, allow_pickle=True, fix_imports=True)
// 保存数组到NumPy文件中( .npy )
numpy.load(file, mmap_mode=None, allow_pickle=False, fix_imports=True, encoding='ASCII')
// 载入数组或选择的对象(.npy , .npz)或选择的文件
其中:
npy格式:以二进制的方式存储文件,在二进制文件第一行以文本形式保存了数据的元信息(ndim,dtype,shape等),可以用二进制工具查看内容。
npz格式:以压缩打包的方式存储文件,可以用压缩软件解压。
- numpy文本文件操作
numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ', encoding=None)
// 保存数组到一个txt文件
fname:文件路径
X:存入文件的数组。
fmt:写入文件中每个元素的字符串格式,默认’%.18e’(保留18位小数的浮点数形式)。
delimiter:分割字符串,默认以空格分隔。
numpy.loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes', max_rows=None)
// 从txt文件中载入数据
fname:文件路径。
dtype:数据类型,默认为float。
comments: 字符串或字符串组成的列表,默认为# , 表示注释字符集开始的标志。
skiprows:跳过多少行,一般跳过第一行表头。
usecols:元组(元组内数据为列的数值索引), 用来指定要读取数据的列(第一列为0)。
unpack:当加载多列数据时是否需要将数据列进行解耦赋值给不同的变量。
numpy.genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=''.join(sorted(NameValidator.defaultdeletechars)), replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None, encoding='bytes')
// 从txt文件中载入数据,可以处理确实values的情况
- numpy文本格式选项
numpy.set_printoptions(precision=None,threshold=None, edgeitems=None,linewidth=None, suppress=None, nanstr=None, infstr=None,formatter=None, sign=None, floatmode=None, **kwarg)
// 设置文本格式
precision:设置浮点精度,控制输出的小数点个数,默认是8。
threshold:概略显示,超过该值则以“…”的形式来表示,默认是1000。
linewidth:用于确定每行多少字符数后插入换行符,默认为75。
suppress:当suppress=True,表示小数不需要以科学计数法的形式输出,默认是False。
nanstr:浮点非数字的字符串表示形式,默认nan。
infstr:浮点无穷大的字符串表示形式,默认inf。
Example
- numpy文件的保存和读取
import numpy as np
outfile = r'.\test.npz'
x = np.linspace(0, np.pi, 5)
y = np.sin(x)
z = np.cos(x)
np.savez(outfile, x, y, z_d=z)
data = np.load(outfile)
np.set_printoptions(suppress=True)
print(data.files)
# ['z_d', 'arr_0', 'arr_1']
print(data['arr_0'])
# [0. 0.78539816 1.57079633 2.35619449 3.14159265]
print(data['arr_1'])
# [0. 0.70710678 1. 0.70710678 0. ]
print(data['z_d'])
# [ 1. 0.70710678 0. -0.70710678 -1. ]
- numpy文本文件操作
data1.csv文件
id,value1,value2,value3
1,123,1.4,23
2,110,,18
3,,2.1,19
import numpy as np
outfile = r'.\data1.csv'
x = np.genfromtxt(outfile, delimiter=',', names=True)
print(x)
# [(1., 123., 1.4, 23.) (2., 110., nan, 18.) (3., nan, 2.1, 19.)]
print(type(x))
# <class 'numpy.ndarray'>
print(x.dtype)
# [('id', '<f8'), ('value1', '<f8'), ('value2', '<f8'), ('value3', '<f8')]
print(x['id']) # [1. 2. 3.]
print(x['value1']) # [123. 110. nan]
print(x['value2']) # [1.4 nan 2.1]
print(x['value3']) # [23. 18. 19.]
- numpy文本格式选项
import numpy as np
np.set_printoptions(precision=4)
x = np.array([1.123456789])
print(x) # [1.1235]
np.set_printoptions(threshold=20)
x = np.arange(50)
print(x) # [ 0 1 2 ... 47 48 49]
np.set_printoptions(threshold=np.iinfo(np.int).max)
print(x)
# [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# 48 49]
eps = np.finfo(float).eps
x = np.arange(4.)
x = x ** 2 - (x + eps) ** 2
print(x)
# [-4.9304e-32 -4.4409e-16 0.0000e+00 0.0000e+00]
np.set_printoptions(suppress=True)
print(x) # [-0. -0. 0. 0.]
x = np.linspace(0, 10, 10)
print(x)
# [ 0. 1.1111 2.2222 3.3333 4.4444 5.5556 6.6667 7.7778 8.8889
# 10. ]
np.set_printoptions(precision=2, suppress=True, threshold=5)
print(x) # [ 0. 1.11 2.22 ... 7.78 8.89 10. ]