CV实践--语义分割6

本文探讨了深度学习中的集成学习方法,包括CNN模型的平均概率集成、投票集成,以及Dropout防止过拟合、TTA数据扩增和SnapshotEnsemble模型融合。重点介绍了如何在实践中运用这些技术来提升模型预测精度。
摘要由CSDN通过智能技术生成

集成学习方法

  • 在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有 Stacking、Bagging和 Boosting,同时这些集成学习方法与具体验证集划分联系紧密。
    构建了 10 折交叉验证,训练得到 10 个语义分割模型
    那么在 10 个 CNN 模型可以使用如下方式进行集成:
  1. 对预测的结果的概率值进行平均,然后解码为具体字符;
  2. 对预测的字符进行投票,得到最终字符。

深度学习中的集成学习

  1. Dropout
    在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都起作用。
    可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。

  2. TTA
    测试集数据扩增(Test Time Augmentation,简称 TTA),数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。
    在这里插入图片描述

  3. Snapshot
    在论文 Snapshot Ensembles 中,作者提出使用 cyclical learning rate 进行训练模型,并保存精度比较好的一些 checkopint,最后将多个 checkpoint 进行模型集成。
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值