模型集成
集成学习方法
- 在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有 Stacking、Bagging和 Boosting,同时这些集成学习方法与具体验证集划分联系紧密。
那么在 10 个 CNN 模型可以使用如下方式进行集成:
- 对预测的结果的概率值进行平均,然后解码为具体字符;
- 对预测的字符进行投票,得到最终字符。
深度学习中的集成学习
-
Dropout
在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都起作用。
可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。 -
TTA
测试集数据扩增(Test Time Augmentation,简称 TTA),数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。
-
Snapshot
在论文 Snapshot Ensembles 中,作者提出使用 cyclical learning rate 进行训练模型,并保存精度比较好的一些 checkopint,最后将多个 checkpoint 进行模型集成。