【论文阅读】A New Meta-Baseline for Few-Shot Learning

【论文阅读】A New Meta-Baseline for Few-Shot Learning

  1. 参考文献格式:Chen Y , Wang X , Liu Z , et al. A New Meta-Baseline for Few-Shot Learning[J]. 2020.
  2. 论文地址:https://arxiv.org/abs/2003.04390
  3. 源码地址:https://github.com/yinboc/few-shot-meta-baseline

1.1 主要内容

提出了一种元基线 (Meta-Baseline)方法,通过在所有基类(base classes)上预先训练分类器,并在基于最近质心的小样本(few-shot)分类算法上进行元学习,实验结果大大优于目前最先进的方法。

在元学习阶段,一个模型在基类未见任务中的获得更强泛化能力的同时,在新类任务中的泛化表现可能反而下降。此外,对于元基线来说,存在2个重要的因素:一个是预训练,另一个是从预训练分类器中继承一个好的小样本分类度量。这就有可能让模型更好地利用,具有更强可传递性的预训练表示。

什么是元基线方法?

小样本学习的目的,是让分类模型能迁移到仅带有少量标记样本的新类别中。而元学习是目前小样本学习研究中比较常见的方法。作者元基线方法所做的,是用最简单的形式利用预训练分类器和元学习的优势。

元基线方法包括两个训练阶段。

在这里插入图片描述

阶段一:预训练阶段

预训练阶段,主要是**分类器基线(Classifier-Baseline)**的训练。

具体方法是,在具有标准交叉熵损失的所有基类上训练分类器,然后删除其最后一个 FC 层,得到编码器 fθ。编码器能将输入映射到特征空间。

阶段二:元学习(meta-learning)阶段

这一阶段,主要基于分类器基线评估算法,进行模型优化。

给定预训练特征编码器fθ,在基类训练数据中采样 N-way K-shot 任务。

为了计算每个任务的损失,在支持集(support-set)中计算N种类型的质心,公式如下:

在这里插入图片描述

然后用它们来计算查询集(query-set)中每个样本的预测概率分布,公式如下:

在这里插入图片描述

损失是根据 p 和查询集样本的标签计算的交叉熵损失。

1.2 实验结果

元基线方法效果如何?(大幅提升性能)

论文作者在 miniImageNet 和 tieredImageNet 两个数据集上进行了实验。
在这里插入图片描述
( miniImageNet)
在这里插入图片描述
(tieredImageNet)

改进效果并不仅仅局限于 N-way K-shot 任务。在单类 K-shot 任务中,实验结果同样证明了元学习阶段的有效性。
在这里插入图片描述

作者还在大规模数据集 ImageNet-800 上进行了进一步评估。

在这一规模的数据集上,1-shot 任务中,比起分类器基线,元基线有大幅提升。但在 5-shot 任务中,性能没有明显的改善。
在这里插入图片描述

1.3 源码复现

https://github.com/yinboc/few-shot-meta-baseline

(下一步。。。)

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值