Link Prediction Note

Link Prediction Note

已有方法

  1. 启发式算法
    Common Neighbor、Adamic Adar
    利用两个节点之间预先定义的特征来衡量节点之间的相似度。
    基于三元闭包理论
    **缺点:**基于有限的自定义特征,无法更深入的学习图的结构
  2. Network Embedding方法
    基于游走的方法学习节点的embedding,如:DeepWalk、Node2vec等方法
    **缺点:**无监督的方式,没法将链接预测任务嵌入到有监督学习流程中,且无法适用用户的节点属性,无法取得较好的预测精度
  3. GNN 方法
    基于图神经网络学习的方法:GCN、GAT、GraphSage等,通过对节点聚合其来自邻居节点的信息最终得到节点的表示,来实现图结构特征的学习。
  • Node-Centric GNN
    GCN、GAT、GraphSage模型等都是针对两个节点的邻域进行表征,生成节点表征时,仅仅考虑对两个节点的邻域节点属性独立地进行聚合,忽略了对节点之间的交互结构建模。
  • Edge-centric GNN
    不仅考虑聚合节点的邻域信息,也考虑两个节点之间的连接,例如在SEAL中,使用Node labeling编码标注邻域节点的角色,GIL(Graph Inference Learning)框架使用两个节点之间之间的路径可达性(如random walk相似度)辅助链接预测任务学习,GraIL使用graph-level的readout函数进行子图结构的表征。现有的Edge-centric GNN将结构信息和属性信息分开建模,无法抽取到高阶结构和属性的融合信息,如在社交网络中,无法建模“A和B之间校友关系的共同好友数量”这样的pattern。
    DEGNN 通过anchor node 锚点将节点之间的路径长度信息加入了模型中。

相关论文

问题

  • 社交网络结构特征
    • 长尾分布特征
    • 用户节点度的特征加粗样式
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值