(1)a|b <=> -a|b <=> a|-b <=>-a|-b <=> |a|||b|;
证明:
因为a|b,则存在m∈Z,使得b=am。
所以存在整数-m使得b=-a(-m),则-a|b;反之亦然。
同理,存在整数-m使得-b=a(-m),则a|-b; 反之亦然。
同理,存在整数m使得-b=-am,则-a|-b;反之亦然。
同理,存在整数|m|使得|b|=|a||m|,则 |a|||b|。反之亦然。
(2) b≠0且a|b=>|a|≤|b|;
证明:
因为a|b,则存在m∈Z,使得b=am。
又因为b≠0,所以|b|≧|a|,当且仅当,m=±1,等号成立。
(3) a|b且b|c => a|c;
证明:
因为a|b,则存在m∈Z,使得b=am。
又因为b|c,则存在n∈Z,使得c=bn。
所以c=bn=amn,令l=mn,则c=la,又因为l∈Z,所以a|c。
(4) a|b 且 b|a => b=±a;
证明;
因为a|b,则存在m∈Z,使得b=am。
又因为b|a,则存在n∈Z,使得a=bn。
所以a=bn=amn,所以,mn=1,所以a=±b,即b=±a。
(5) a|b 且 a|c <=> 对任意t,s∈Z有a|tb+sc;
证明;
充分性:
因为a|b,则存在m∈Z,使得b=am。
又因为a|c,则存在n∈Z,使得c=an。
对任意t,s∈Z,
b=am => tb=tam;
c=an => sc=san;
则,tb+sc=tam+san=a(tm+sn)
令tm+sn=l,有上述可知,l∈Z,
且 tb+sc=al,则对任意t,s∈Z有a|tb+sc;
必要性:
因为a|tb+sc,则存在r∈Z,使得tb+sc=ra。
令r=tm+sn,m,n ∈Z,则tb+sc=a(tm+sn)
即,tb=atm =>b=am => a|b
sc=asn => c=an =>a|c
综上可得:
a|b 且 a|c <=> 对任意t,s∈Z有a|tb+sc;
(6) 设m≠0, a|b <=> ma|mb
证明:
充分性:
因为a|b,则存在n∈Z,使得b=an。
设m≠0,则bm=anm,也即ma|mb。
必要性:
因为ma|mb,则存在n∈Z,使得bm=nam。
又因为m≠0,b=an,也即 a|b。
综上可得,设m≠0, a|b <=> ma|mb
第一章 课本习题
1. 证明:6|n(n+1)(2n+1),其中n是任何整数。
证明:
根据求和公式得:
1+22+32+42+…+n2=1/6[n(n+1)(2n+1)]
则存在 n(n+1)(2n+1)=6(1+22+32+42+…+n2)
令1+22+32+42+…+n2=m
则n(n+1)(2n+1)=6m,且m∈Z
所以6|n(n+1)(2n+1)。
2, 证明:任意n个连续整数中(n≧1),有一个且只有一个数被n除尽。
证明:
设这些n个连续整数分别为:m,m+1,m+2,…,m+n-2,m+n-1(m≧1)
当m≧1时,无论m取何值,连续n个数被n除的余数的结果在0,1,2,…,n-1中。
存在性:
因为有n个连续整数,无论余数如何排列,都一定有被n除余0这种可能,则被n除的余数必然存在0。
唯一性:
因为有n个连续整数,n个数中被n除的余数一定是从0,1,2,…,n-1中出现,且每个余数只出现一次。
3. 证明:若m-p|(mn+qp),则m-p|(mq+np)。
证明:
因为m-p|(mn+qp),则存在r∈Z,使得(mn+qp)=r(m-p)。
(mn+qp)-(mq+np)=m(n-q)+p(q-n)=(m-p)(q-n)=>mq+np=(mn+qp)-(m-p)(q-n)
=r(m-p)-(q-n)(m-p)=(r-q+n)(m-p)。
令r-q+n=t,t∈Z,即mq+np=t(m-p),也即m-p|(mq+np)。
所以若m-p|(mn+qp),则m-p|(mq+np)。