【小白爬Leetcode78】4.1 子集 Subsets


Leetcode 78 m e d i u m \color{#FF0000}{medium} medium

点击进入原题链接:Leetcode 78 子集 Subsets

题目

discription

Given a set of distinct integers, nums, return all possible subsets (the power set).

Note: The solution set must not contain duplicate subsets.

Example:
在这里插入图片描述

中文描述

给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:
在这里插入图片描述

解法一:递归法

选子集,具体到每一个元素身上,无非两种选择:选这个元素或者不选这个元素

因此有了这样一个思想,遍历nums数组,选择当前元素nums[i]是一个分支,不选择nums[i]又是一个分支,每一个分支下面又有新的分支,如图所示:图片来源:小象学院 点击进入原视频
在这里插入图片描述
实现代码如下:

class Solution {
public:
	//先定义递归过程
    void subsets_builder(vector<int>& nums,vector<vector<int>>& res,vector<int>& items,int idx){
        if(idx>=nums.size()) return;
		//选择nums[idx]的分支
        items.push_back(nums[idx]);
        res.push_back(items);
        subsets_builder(nums,res,items,idx+1);
		//不选择nums[idx]的分支
        items.pop_back();
        subsets_builder(nums,res,items,idx+1);
    }
    vector<vector<int>> subsets(vector<int>& nums) {
        vector<vector<int>> res; //最后要返回的数组
        vector<int>items; //每次要push_back进res里的子集
        res.push_back(items);
        int idx = 0; //从0开始遍历nums数组的元素
        subsets_builder(nums,res,items,idx);
        return res;
    }
};

时间复杂度: 由于对于每一个元素来说,都需要有一个二分,所以时间复杂度为O(2n)
空间复杂度: 没有用到额外的容器,因此为 O(1)
在这里插入图片描述

小改进

上面的写法存在不直观的问题:

  1. 左分支(包含nums[i])的时候向respush_back当前的items,为了避免重复,右分支的是时候没有对res写入。这样会导致漏了一个情况[],需要手动补全,也很不方便。
    解决方法: 其实每个子集无非是对非一个nums里的每一个元素做选或不选的选择题(这一点和思路二很像),因此递归的所有子分支的末尾的items都是一个完整的子集,所以res.push_back(items)其实可以放在最后的结束递归条件里,即:
        if(idx>=nums.size()){
            res.push_back(items);
            return;}
  1. 先考虑包含nums[i]的分支,再考虑不含nums[i]的分支,其实掩盖了维护items的思想:由于我需要回溯,因此返回到上一层时,items应该回复上一步的样子,即items.pop_back();,而在上面的代码中,items.pop_back();干了两件事:1. 为右分支(不含nums[i]的分支)创造条件;2. 维护items数组以便维护。 这不是很直观,因此我调换了两个分支的顺序。

完整代码如下:

class Solution {
public:
	//先定义递归过程
    void subsets_builder(vector<int>& nums,vector<vector<int>>& res,vector<int>& items,int idx){
        if(idx>=nums.size()){
            res.push_back(items);
            return;}
        //不选择nums[idx]的分支
        subsets_builder(nums,res,items,idx+1);
		//选择nums[idx]的分支
        items.push_back(nums[idx]);
        subsets_builder(nums,res,items,idx+1);
        //由于items是传引用,因此要把items恢复到上一步的状态,这样才能“回溯”
        items.pop_back();
    }
    vector<vector<int>> subsets(vector<int>& nums) {
        vector<vector<int>> res; //最后要返回的数组
        vector<int>items; //每次要push_back进res里的子集
        int idx = 0; //从0开始遍历nums数组的元素
        subsets_builder(nums,res,items,idx);
        return res;
    }
};

在这里插入图片描述

解法二:位运算

声明:图片来源:小象学院 点击进入原视频
首先复习一下C++里的位运算:
在这里插入图片描述
之前一直不太理解左移和右移,现在理解了一下:

以左移k位为例,相当于乘了k个2,二进制里乘k个2就是在后面加k个0(对比一下十进制里,乘k个10也是在后面加k个0);

右移k位,就是把“小数点”往前移动k位,并舍弃小数点(向下取整),比如0101>>2 = 01.01 = 0001(前面几个0不影响大小)

当然这个图的取反是有点小问题的,一个int型在PC上应该是32/64位,不可能只有四位数字的,因此3取反不可能是12这么小。

言归正传,这道题的思路:

假设nums里有{A,B,C}三个元素,这三个元素可以分别用001\010\100表示(每一个位表示某个元素是否能取到)。
众所周知,根据二项式定理,3个元素选取k个,一共有2^3=8种,正好是0b111+1表示的数字。
那么如下图所以,所有的可能性都可以用0b0000b111之间的数字来表示:
在这里插入图片描述
和思路一一样,设置一个vector<int> items来表达当前的子集,vector<vector<int>> ret表示子集的集合。

i从0循环到7,j表示nums的下标,如果i1<<j(1左移j次,相当于乘了j个2)之间取与运算&为1,表示这个组合里包含第j个元素,则items.push_back(nums[j]),与第一问不一样的的是,每一层外层循环,items都被重新初始化一次。
在这里插入图片描述
完整代码如下:

class Solution {
public:
    vector<vector<int>> subsets(vector<int>& nums) {
        int max_num = 1<<nums.size(); //相当于python里的2**nums.size()
        vector<vector<int>> ret;  //最终返回结果的数组
        for(int i=0;i<max_num;i++){
        vector<int> items;  // 保存子集的数组
            for(int j=0;j<nums.size();j++){
                if(i&(1<<j)){  // 如果按位与为真,说明i所代表的子集里有nums[j]这个元素
                    items.push_back(nums[j]);
                }
            }
        ret.push_back(items);
        }
    return ret;
    }
};

这可能也是二进制的魅力,在表达是/非的逻辑上,0和1两个数字足矣,而二项式定理正好也是2的n次幂,因此最高位的 111…1+1 就代表了一共有多少个组合数。

另外第一次写的时候,把按位与&符号写成了逻辑与&&符号,关于二者的区别可以参考:
C++中运算符 &和&&、|和|| 的区别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值