机器学习(深度学习):专注于南亚地区淡水鱼疾病检测的图像数据集
“南亚淡水鱼疾病水产养殖数据集”是一个专注于南亚地区淡水鱼疾病检测的图像数据集,旨在支持水产养殖中鱼类疾病的识别和诊断。以下是关于该数据集的详细介绍:南亚地区水产养殖业发达,但鱼类疾病频发,给养殖户带来巨大损失。为了帮助养殖者及时发现和处理疾病,该数据集应运而生。它通过收集和标注大量患病鱼类图像,为基于深度学习的疾病识别模型提供训练基础。该数据集包含7个类别,涵盖常见的淡水鱼疾病:
细菌性疾病(如气单胞菌病,共250张图像)。细菌性烂鳃病(250张图像)。细菌性红病(250张图像)。真菌性疾病(如水霉病,共250张图像)。健康鱼类(250张图像)。寄生虫性疾病(250张图像)。病毒性疾病(如白尾病,共250张图像)。数据来源数据主要来源于南亚地区多个淡水水产养殖研究所的图像资源,同时结合了网络上公开的图像数据。这些图像经过筛选和标注,确保其质量和准确性。数据格式:数据集以图像文件为主,每个图像文件对应一个标签,表明其所属的疾病类别。此外,还提供了一个CSV文件,用于存储图像路径和对应的标签信息,方便模型训练和验证。数据集的应用:该数据集可用于训练和评估鱼类疾病识别模型,帮助养殖者快速准确地识别鱼类疾病,从而采取及时有效的治疗措施。通过机器学习或深度学习技术,模型可以学习到不同疾病在鱼类皮肤等部位的特征表现,进而实现自动化疾病诊断。
数据集的价值:该数据集不仅为研究人员提供了丰富的样本资源,还推动了水产养殖行业的数字化转型。通过利用人工智能技术,养殖户可以更高效地管理养殖过程,降低疾病风险,提高经济效益。总之,这个数据集是南亚地区水产养殖领域的一个重要资源,为鱼类疾病检测和防治提供了有力支持。
机器学习(深度学习):用于脑肿瘤的带有边界框的磁共振成像
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
机器学习(深度学习):洪水区域分割,是图像处理或地理信息系统等领域数据集
数据集是一个用于洪水区域分割的图像数据集,旨在帮助研究人员和开发者训练和测试洪水识别模型。以下是关于该数据集的详细介绍:该数据集包含290幅洪水灾区的图像及其对应的掩模图像。图像为RGB格式,掩模图像为灰度图像,其中洪水区域以白色像素(值为255)表示,非洪水区域以黑色像素(值为0)表示。这种二元分割的掩模设计使得该数据集适合用于二元语义分割任务。数据集的文件结构清晰,包含以下部分:
图像文件夹:存放所有洪水图像。掩模文件夹:存放所有对应的掩模图像。metadata.csv:一个CSV文件,用于将图像名称与其掩模图像进行映射,方便数据的管理和使用。标注方式:掩模图像是使用开源数据标注软件Label Studio创建的,标注质量较高。应用场景:该数据集可用于洪水监测、灾害评估、洪水区域分析等实际应用,帮助相关部门更好地进行决策和规划。数据规模:虽然数据集包含的图像数量不多,但通过数据增强技术,可以有效提升模型的泛化能力。由于数据集的图像数量有限,训练一个高性能的分割模型可能需要借助预训练模型和数据增强技术。此外,洪水区域与背景之间的像素差异较小,且可能存在部分被淹没的物体(如车辆、房屋等),这增加了分割的难度。该数据集适合用于深度学习中的语义分割任务,研究人员可以使用卷积神经网络(如U-Net、DeepLab等)来训练模型,以实现对洪水区域的准确分割。通过该数据集训练的模型,可以在洪水灾害发生后快速识别受灾区域,为救援和恢复工作提供支持。
机器学习(深度学习):一个专注于苹果树叶病害分类的数据集
数据集是一个专注于苹果树叶病害分类的数据集,旨在通过机器学习和计算机视觉技术帮助研究人员和开发者识别苹果树叶的病害类型。以下是关于该数据集的详细介绍:该数据集包含苹果树叶的图像,分为训练集和测试集。训练集包含7,771张图像,测试集包含1,943张图像,总计9,714张图像。图像被分为四个类别:苹果锈病(Cedar Apple Rust)、苹果黑斑病(Apple Scab)、苹果黑腐病(Black Rot)和健康叶片(Healthy)。每个类别的图像数量分布较为均衡,例如训练集中苹果锈病图像有1,760张,苹果黑斑病图像有2,016张,苹果黑腐病图像有1,987张,健康叶片图像有2,008张。图像标准化:所有图像均被统一调整为256x256像素,这使得数据集在输入卷积神经网络(CNN)等模型时无需额外的预处理步骤,大大简化了数据准备工作。应用场景广泛:该数据集可用于多种机器学习任务,如图像分类、目标检测等,尤其适合用于训练深度学习模型来自动识别苹果树叶的病害类型。平衡性好:数据集中每个类别的样本数量较为平衡,这有助于训练出更鲁棒的模型,避免因类别不平衡而导致的模型偏向多数类。该数据集是从Kaggle上公开的植物病害数据集中提取的一个子集,专门用于研究苹果树叶的病害情况。其原始数据集是“New Plant Diseases Dataset”,经过筛选和整理后,形成了专注于苹果树叶病害的分类数据集。该数据集广泛应用于农业领域的病害检测研究中。通过使用该数据集,研究人员可以开发出高效的病害检测模型,帮助果农及时发现苹果树的病害情况,从而采取有效的防治措施,减少病害对苹果产量和质量的影响。例如,一些研究利用该数据集训练了基于CNN的深度学习模型,取得了较高的分类准确率,为实现自动化病害检测提供了有力支持。
机器学习(深度学习):数据集是一个无人机鲨鱼检测数据集
数据集是一个专注于通过无人机拍摄的图像和视频来检测鲨鱼的数据集。它为我们提供了一个独特的视角和丰富的样本,这对于研究鲨鱼的行为模式、保护海洋生态环境以及开发高效的鲨鱼检测算法具有重要意义。通过该数据集,我们可以更好地理解鲨鱼在自然环境中的活动规律,同时也为相关技术的开发提供了宝贵的资源。我们计划将该数据集用于以下几个方面:算法开发:利用数据集中的图像和视频,训练和优化鲨鱼检测算法,提高算法的准确性和效率。生态研究:通过分析数据集中的鲨鱼活动,为海洋生态研究提供数据支持,帮助科学家更好地了解鲨鱼的栖息地和行为模式。教育与科普:将数据集中的部分图像和视频用于教育和科普活动,提高公众对海洋生物保护的意识。
机器学习(深度学习):一个用于骨折分类的医学图像数据集
一个用于骨折分类的医学图像数据集,旨在通过计算机视觉技术帮助研究人员和医疗专业人员准确识别和分类骨折类型。以下是关于该数据集的详细介绍。该数据集包含了多种类型的骨折X光图像,涵盖了常见的骨折类别,如撕脱性骨折(Avulsion Fractures)、粉碎性骨折(Comminuted Fractures)、骨折脱位(Fracture-Dislocations)、青枝骨折(Greenstick Fractures)、发际线骨折(Hairline Fractures)、嵌插性骨折(Impacted Fractures)、纵向骨折(Longitudinal Fractures)、斜行骨折(Oblique Fractures)、病理性骨折(Pathological Fractures)和螺旋形骨折(Spiral Fractures)等。多样性:数据集中的图像来自不同的骨折类型,能够为模型训练提供丰富的样本。高质量标注:数据由专业放射科医生手动标记,确保了数据的准确性和可靠性。适用性:该数据集适用于机器学习和深度学习项目,可用于开发自动化骨折分类系统。该数据集主要用于训练和验证计算机视觉模型,以实现从X光图像中自动识别和分类骨折类型。通过自动化骨折分类,可以提高医疗诊断的效率和准确性,减少人为误判,并帮助医疗专业人员更快地做出决策。是一个极具价值的医学图像数据集,能够为医疗领域的研究人员和从业者提供有力支持,推动医学影像分析技术的发展。
机器学习(深度学习):公开的船舶图像数据集
公开的船舶图像数据集,主要用于深度学习中的船舶分类任务。以下是该数据集的详细介绍:图像数量:数据集包含8932张船舶图像,其中6252张用于训练,2680张用于测试。船舶类别:数据集涵盖了五类船舶,分别是货船(Cargo)、军舰(Military)、航空母舰(Carrier)、游轮(Cruise)和油轮(Tankers)图像特点:图像拍摄于不同的方向、天气条件、拍摄距离和角度,涵盖了国际和近海港口[^3^]。图像格式包括RGB彩色图像和灰度图像,且图像像素大小不一。数据集通常被划分为训练集和测试集,比例为70:30。这种划分方式有助于模型在训练阶段学习到足够的特征,并在测试阶段评估模型的性能,该数据集主要用于船舶分类任务,通过深度学习模型对不同类型的船舶进行识别和分类。例如,有研究使用该数据集训练卷积神经网络(CNN)模型,以提高船舶分类的准确率。多样性:图像的多样性和复杂性使得该数据集能够有效模拟真实世界中的船舶识别场景。实用性:该数据集为研究人员提供了一个标准化的测试平台,用于开发和验证新的船舶分类算法。研究基础:该数据集已被用于多种深度学习模型的训练和评估,为船舶识别领域的研究提供了基础。是一个适合用于船舶分类研究的数据集,其多样性和丰富性使其成为深度学习领域中一个有价值的资源。
机器学习(深度学习):改进的盗贼检测数据集
改进的盗贼检测数据集”,旨在训练基于YOLO的目标检测模型,以识别监控视频中的人类和可疑行为。数据集包含12个监控风格视频的注释帧,分为训练、验证和测试子集,注释采用YOLO格式,包含“人类”和“可疑”两类。该数据集适用于商店、ATM和公共区域的安全应用,使用YOLOv8、Roboflow和OpenCV等工具创建。数据集目的该数据集旨在提高实时视频流中盗窃检测的准确性和鲁棒性,特别适用于商店、ATM和公共区域的安全应用。
数据结构:包含12个监控风格视频的图像。
注释采用YOLO格式,包含“人类”和“可疑”两类。
数据集子集
train/:训练图像和注释。
valid/:模型调整的验证集。
test/:评估最终性能的测试集。
使用案例
盗窃检测系统。
商店、ATM或家庭的实时监控。
带有AI警报的智能监控。
工具使用
YOLOv8用于目标检测。
Roboflow用于注释和数据集管理。
OpenCV用于视频处理和帧提取。
许可信息
数据集遵循CC BY 4.0许可,可自由使用、分享和改编,需正确署名。
机器学习(深度学习):非洲李子训练和评估水果质量评估和缺陷检测的AI模型数据集
非洲李子数据集,包含4507张来自喀麦隆不同地区的非洲李子图像,用于训练和评估水果质量评估和缺陷检测的AI模型。图像分为六类:瘀伤、开裂、腐烂、有斑点、未受影响和未成熟。数据集还包括一个CSV文件,提供图像ID、标签和缺陷类型,适合农业、计算机视觉和AI应用领域的研究人员和开发人员使用,尤其关注代表性不足的地区和作物。数据集概览 数据集包含4507张非洲李子的注释图像,这些图像收集自喀麦隆的不同田地。它旨在用于训练和评估AI模型,以进行水果质量评估和缺陷检测。图像根据缺陷类型分为六类:瘀伤、开裂、腐烂、有斑点、未受影响和未成熟。数据集结构 图像以“plum”为名,存储在对应缺陷类型的文件夹中。此外,数据集包含一个CSV文件(plums_data.csv),提供图像ID、标签(有缺陷、未受影响、未成熟)和缺陷类型,便于参考。数据集特点 数据集的可用性评分为7.65,采用CC BY-SA 4.0许可。它适合农业、计算机视觉和AI应用领域的研究人员和开发人员,特别是在代表性不足的地区和作物方面。数据集活动 数据集在过去30天内获得了778次浏览和486次下载,下载与浏览的比例为0.33860。
机器学习(深度学习):数据集是一个用于研究COVID-19感染的肺部CT扫描图像数据集
数据集是一个用于研究COVID-19感染的肺部CT扫描图像数据集,该数据集包含1400张肺部CT扫描图像,分为两个类别:新冠(COVID-19)阳性患者的CT扫描图像有58张,未感染新冠的CT扫描图像有1342张。这些图像以2D形式呈现,文件格式包括.png、.jpg和.jpeg。图像的尺寸大小不一,最小尺寸为像素,中值尺寸为像素,最大尺寸为像素。该数据集由研究人员收集并公开,旨在促进基于深度学习技术的新冠检测算法研究和相关应用程序的研发。肺部CT扫描图像对判断是否患有新冠疾病及新冠感染程度都有重要帮助,因此该数据集对于开发快速识别新冠感染的算法具有重要意义。类别不平衡:数据集中新冠阴性的图像数量远大于新冠阳性的图像数量,这种类别的严重不平衡可能会给开发相应算法带来挑战。
多样性和质量:虽然该数据集的规模相对较小,但图像来自不同的患者和扫描设备,具有一定的多样性。图像质量较高,能够为研究人员提供清晰的肺部结构细节。该数据集可用于多种研究和开发场景,包括但不限于:新冠感染的自动检测:利用深度学习算法对CT图像进行分析,快速识别新冠阳性患者。病情评估与监测:通过分析CT图像中的病变特征,评估新冠患者的病情严重程度和治疗效果。算法开发与验证:为研究人员提供一个标准化的数据集,用于开发和验证新的图像处理和分析算法。尽管该数据集在新冠研究中具有重要价值,但也存在一些局限性。例如,数据集规模较小,可能无法涵盖所有可能的新冠感染模式和患者特征。此外,数据集中类别的不平衡可能需要研究人员在算法开发过程中采取特殊措施来解决
机器学习(计算机视觉):卫星图像的土地利用和土地覆盖分类数据集
数据集是一个基于 Sentinel-2 卫星图像的土地利用和土地覆盖分类数据集,由 Patrick Helber 等人开发。它包含 27,000 张标注清晰且地理定位精确的图像,覆盖 13 个光谱波段,分为 10 个类别,包括年度作物、森林、草本植被、高速公路、工业建筑、牧场、永久作物、住宅建筑、河流和海洋/湖泊等,该数据集的图像分辨率均为 64×64 像素,提供了两种版本:仅 RGB 通道版本和包含全部 13 个多光谱波段的版本。其构建过程包括图像采集、预处理、标注和验证,确保了数据的高质量和可靠性。EuroSAT 数据集的主要特点包括高分辨率的卫星图像、多样化的土地覆盖类型以及广泛的地理覆盖范围。它不仅适用于遥感图像分类任务,还可用于城市规划、环境监测、资源管理和地理空间分析等领域。此外,该数据集还提供了预训练的深度卷积神经网络(CNN)模型,能够实现高达 98.57% 的分类准确率。数据集的开源性和详细的文档使其成为遥感领域的重要资源,推动了相关技术的发展和应用。
机器学习(计算机视觉):用于良性前列腺增生分类的诊断成像数据集
数据集是一个用于良性前列腺增生分类的诊断成像数据集,良性前列腺增生(BPH)是中老年男性常见疾病,其特征是前列腺组织的非恶性增生,导致下尿路症状(LUTS),严重影响患者生活质量。随着年龄增长,BPH的发病率显著增加,60岁以上男性的组织学患病率达50%–60%,70岁以上可达80%–90%。目前,BPH的诊断主要依赖影像学检查和尿流率评估,缺乏特异性标志物,因此,开发更准确的诊断工具具有重要意义。该数据集包含用于BPH分类的影像学数据,可能涉及多种成像技术,如超声(US)和磁共振成像(MRI)。MRI因其多平面成像和优越的软组织对比度,在BPH诊断中具有独特优势,可用于区分BPH与前列腺癌、估算前列腺体积、确定增生位置及分类。此外,数据集可能还包含患者的临床信息,如症状评分、前列腺特异性抗原(PSA)水平等,该数据集可用于开发和验证BPH诊断模型,通过机器学习等技术分析影像学特征,提高诊断准确性。例如,有研究利用基因表达数据和机器学习方法,识别出与BPH相关的差异表达基因,并探讨其作为诊断标志物的潜力。此外,数据集还可用于研究BPH的病理生理机制,如细胞外基质重塑和信号通路异常。该数据集为研究人员提供了一个宝贵资源,有助于推动BPH诊断技术的发展,改善患者预后。通过深入分析影像学数据和临床信息,可以更好地理解BPH的发病机制,开发新的诊断标志物和治疗方法。
机器学习(计算机视觉):谷歌(Google)相关的一个关于生成式人工智能(GenAI)的密集型(Intensive)项目或活动数据集
数据集是与谷歌(Google)2025年4月举办的生成式人工智能(GenAI)密集课程相关的白皮书集合。以下是关于该数据集的详细介绍:课程背景:该数据集来源于谷歌与Kaggle合作举办的为期五天的生成式人工智能密集课程(2025年3月31日至4月4日)。课程旨在通过理论学习与实践操作相结合的方式,帮助参与者深入理解生成式AI技术,并掌握相关技能。课程内容涵盖了生成式AI的基础知识、大型语言模型(LLM)、提示工程、嵌入与向量数据库、生成式AI智能体、领域特定的LLM以及生成式AI的MLOps等多个方面。数据集包含与课程相关的白皮书,这些白皮书详细介绍了生成式AI的各种技术和应用。例如,有关于基础大型语言模型的白皮书,讲解了从Transformer架构到模型微调和推理加速的演变[^8^];还有关于嵌入和向量数据库的白皮书,探讨了文档问答、相似度评分以及如何使用Keras进行分类,除了白皮书,课程还提供了代码实验室,让参与者能够通过实际操作来加深对生成式AI技术的理解。例如,在提示工程的代码实验室中,参与者可以学习如何优化提示以引导LLM生成所需的输出。这些白皮书和代码实验室为参与者提供了丰富的学习资源,帮助他们将理论知识应用于实际问题中。例如,通过学习嵌入和向量数据库的应用,参与者可以构建问答系统或文本相似性分析工具,数据集中的内容反映了生成式AI领域的最新进展,包括智能体的开发、领域特定模型的微调以及MLOps在生成式AI中的应用。数据集是一个全面且实用的学习资源,它不仅涵盖了生成式AI的基础知识,还提供了丰富的实践机会,帮助学习者深入掌握该领域的最新技术。
机器学习(计算机视觉):专注于人工智能与计算机视觉领域的数据集
数据集是一个专注于人工智能与计算机视觉领域的数据集,可在Kaggle上找到。虽然目前关于该数据集的详细信息有限,但根据其名称和所属领域,我们可以推测它可能包含用于训练和测试计算机视觉模型的各种图像或视频数据。计算机视觉是人工智能的一个重要分支,旨在使计算机能够像人类一样理解和解释视觉信息。因此,这类数据集通常包含大量标注了各种信息(如物体类别、位置、属性等)的图像或视频样本。这些数据对于开发和优化计算机视觉模型至关重要,因为模型的性能很大程度上取决于训练数据的质量和数量,该数据集可能适用于多种应用场景,例如物体检测、图像分类、人脸识别等。通过使用此类数据集,研究人员和开发者可以训练出能够准确识别和理解图像内容的模型,从而推动人工智能技术在安防监控、自动驾驶、医疗影像诊断等领域的应用。
机器学习(计算机视觉):专注于肌肉骨骼放射影像的骨折分类、定位和分割的数据集
数据集是一个专注于肌肉骨骼放射影像的骨折分类、定位和分割的数据集,由 Iftekharul Abedeen 等研究人员于 2023 年创建。该数据集包含 4,083 张 X 射线图像,其中 717 张为骨折图像,涵盖了手、腿、髋关节和肩部区域。数据集提供了丰富的标注信息,支持 COCO、VGG、YOLO 和 Pascal VOC 等多种格式,适用于多种深度学习任务。数据集的构建基于从孟加拉国三家主要医院收集的 14,068 张 X 射线图像。为保护患者隐私,所有 DICOM 格式的图像均被转换为 JPG 格式,并去除了敏感的元数据信息。经过筛选,最终保留了 4,083 张与手、腿、髋关节和肩部相关的图像。标注工作由两位放射科专家和一位骨科医生完成,确保了标注的准确性和可靠性。数据集特点
丰富的标注信息:数据集不仅提供了骨折的分类标注,还包含了详细的分割掩码、边界框和区域信息,支持多种深度学习任务。
多样的图像视角:数据集涵盖了前视、侧视和斜视等多种视角的图像,为模型训练提供了丰富的数据维度。
多格式支持:标注信息以 COCO、VGG、YOLO 和 Pascal VOC 等多种格式提供,方便不同研究者根据需求选择合适的格式。FracAtlas 数据集广泛应用于医学影像分析领域,特别是在骨折检测、分类和分割任务中。它可以用于开发自动检测骨折的深度学习模型,帮助医生快速准确地诊断骨折类型和位置。此外,数据集还支持对骨骼结构的精确分割,为医学研究和临床应用提供了重要的支持。FracAtlas 数据集是一个高质量的医学影像资源,为骨折检测和诊断领域的研究提供了重要的支持。
机器学习(计算机视觉):开放获取的光学相干断层扫描(OCT)图像数据集
数据集是一个开放获取的光学相干断层扫描(OCT)图像数据集,专为基于图像的深度学习方法而设计。该数据集包含超过2000张高分辨率的OCT图像,涵盖了多种眼部疾病和病理条件,如年龄相关性黄斑变性(AMD)、糖尿病黄斑水肿(DME)、视网膜动脉阻塞(RAO)、视网膜静脉阻塞(RVO)、视网膜前膜(ERM)和玻璃体黄斑界面疾病(VID)等。这些图像通过Optovue Avanti RTVue XR设备采集,采用动态扫描长度和图像分辨率的光栅扫描协议,以黄斑为中心,能够清晰显示视网膜各层、后玻璃体和脉络膜血管的结构。OCTDL数据集的主要特点是其全面的标注和高质量的图像。每张图像均由经验丰富的视网膜专家进行解读和分类,确保了数据的准确性和可靠性。该数据集被随机分为训练集、验证集和测试集,比例为60:10:20,以支持深度学习模型的开发和验证。此外,OCTDL还提供了详细的CSV文件,用于将疾病与相应的病理条件关联起来,便于与其他数据集(如OCTID和Kermany数据集)结合使用。在技术验证方面,OCTDL数据集已用于测试VGG16和ResNet50两种经典深度学习架构的性能。实验结果表明,该数据集在疾病分类任务中表现良好,其中AMD的分类准确率最高,达到96.3%,而RVO的准确率相对较低,为63.3%OCTDL数据集的发布旨在推动自动处理和早期疾病检测技术的发展,为医学成像领域的研究者提供了一个宝贵的资源。
机器学习(计算机视觉):一个包含腹部CT扫描图像的医学影像数据集
数据集是一个包含腹部CT扫描图像的医学影像数据集,该数据集主要包含用于检测胃癌的腹部CT扫描的轴位切片图像,这些图像最初是在诊断过程中获取的,以识别胃癌的迹象。数据集文件是一个约93.9MB的压缩包,解压后包含一系列腹部CT图像,图像格式可能为DICOM或其他标准医学图像格式。这些图像为研究人员提供了丰富的数据资源,可用于多种医学影像相关的研究和应用开发。数据集的应用
胃癌检测:研究人员可以利用这些CT扫描图像构建和测试算法,以识别CT扫描中的胃癌迹象,从而提高胃癌的诊断准确性和效率。
图像分割:该数据集可用于训练图像分割模型,精确勾勒出腹部器官及潜在肿瘤的轮廓,这对于医学影像分析和诊断具有重要意义。
医学影像研究:研究人员可以利用这些图像探索和创新CT图像分析与处理技术,推动医学影像领域的研究进展。
该数据集专注于胃癌检测相关的腹部CT图像,具有一定的专业性和针对性。虽然其规模可能不如一些大型的多中心、多器官标注的腹部CT数据集(如AbdomenAtlas),但对于专注于胃癌研究或特定医学影像任务的研究人员来说,仍具有较高的价值,需要注意的是,该数据集的规模和标注信息相对有限,如果需要进行更广泛的腹部器官研究或多器官分割任务,可能需要结合其他更大型的数据集(如AbdomenAtlas或AbdomenCT-1K等)来获取更丰富的数据和标注信息。
机器学习(计算机视觉):数字膝关节X光图像数据集
数字膝关节X光图像数据集是一个高质量的医学图像数据集,包含1650张膝关节的数字X光图像,由知名医院和诊断中心提供。这些图像使用PROTEC PRS 500E X光机拍摄,为8位灰度图像,分辨率为300×162到640×161像素不等。每张图像都由两位医学专家根据Kellgren和Lawrence(K&L)分级系统手动标注,用于评估膝关节骨关节炎(OA)的严重程度,分级范围从0(正常)到4(严重)。此外,该数据集还采用了一种基于像素密度的新方法来自动提取软骨区域(感兴趣区域),为研究人员提供了更丰富的信息。
该数据集在医学研究和机器学习领域具有重要价值。它可用于开发自动化的K&L分级模型、计算机辅助诊断工具、模式识别算法以及医学图像处理技术,帮助提高膝关节疾病的诊断效率和准确性。数据集以PNG格式存储,适合用于图像分类、分割和特征提取等任务。
机器学习(计算机视觉):人类胸部的CT扫描图像图像数据集
数据集是一个用于医学影像研究的资源,具体信息如下:
数据集内容
主题:该数据集包含人类胸部的CT扫描图像,主要用于胸部癌症检测。
图像数量:共1000张图像,分为4个类别,包括1个正常(Normal)类别和3个癌类别:腺癌(Adenocarcinoma)、大细胞癌(Large cell carcinoma)和鳞状细胞癌(Squamous cell carcinoma)。
图像格式:图像以JPG或PNG格式存储,便于用于机器学习和深度学习模型的训练。
数据集结构
主文件夹:包含所有子文件夹和图像。
子文件夹:
训练集(Train):占70%,用于模型训练。
测试集(Test):占20%,用于模型测试。
验证集(Validation):占10%,用于模型验证。
数据集特点
多样性和代表性:数据集涵盖了多种胸部癌症类型,能够为相关研究提供丰富的样本。
适用性:图像格式为JPG或PNG,适合用于卷积神经网络(CNN)等深度学习模型的训练和测试。
预处理:数据已经经过清理和分类,可以直接用于机器学习项目。
应用场景
癌症检测:可用于开发和测试用于胸部癌症检测的算法和模型。
图像分割:可用于研究如何精确地分割出胸部器官和病变区域。
医学影像研究:为医学影像分析和处理技术的研究提供数据支持。
该数据集是一个宝贵的资源,对于从事医学影像分析、机器学习和深度学习的研究人员来说,具有重要的研究价值和应用前景。
机器学习(计算机视觉):数据集是一个用于检测行李X光扫描图像中异常物品的数据集
数据集是一个用于检测行李X光扫描图像中异常物品的数据集,它在安全检查领域具有重要的应用价值。以下是关于该数据集的详细介绍:旨在帮助研究人员和开发者构建和测试用于行李X光图像异常检测的算法。数据集中的图像来源于X射线扫描仪,能够清晰地展示行李内部物品的结构和材质。这些图像通常以灰度或伪彩色形式呈现,以便更好地区分不同密度的物体。图像类型:数据集中的图像为X光扫描图像,具有高对比度和清晰的轮廓,能够帮助算法更准确地识别异常物品。
异常检测:数据集的重点是检测行李中的异常物品,如违禁品、危险物品等。这些异常物品可能被隐藏在其他物品中,增加了检测的难度。
标注信息:数据集中的图像通常带有标注信息,包括异常物品的位置、类别等,这有助于训练监督学习模型。
多样性和复杂性:行李中的物品种类繁多,形状和材质各异,数据集能够反映这种多样性和复杂性,为算法提供丰富的训练样本。
安全检查:该数据集主要用于机场、车站等场所的行李安全检查,能够帮助安检人员快速、准确地发现潜在的危险物品,提高安检效率和安全性。
算法研究:研究人员可以利用该数据集开发和测试新的异常检测算法,如深度学习算法、传统机器学习算法等,以提高检测的准确性和鲁棒性。
模型训练与评估:数据集提供了大量的训练样本和测试样本,可用于训练和评估异常检测模型的性能,帮助开发者优化算法和模型参数。
深度学习(图像识别):可回收物和生活垃圾分类
数据集是一个包含15,000张图像的数据集,每张图像的分辨率为256×256像素,涵盖了30个不同类别的可回收材料、一般垃圾和家居用品。该数据集旨在支持垃圾分类和回收领域的研究与开发,帮助创建强大而准确的垃圾分类系统。数据集采用分层文件夹结构,主文件夹名为“images”,其中包含代表具体垃圾类别的子文件夹,这些子文件夹的名称即为对应的类别标签。每个类别子文件夹下分为“default”和“real_world”两个子文件夹,分别包含250张标准图像和250张真实场景图像。所有图像均为PNG格式,确保了高质量和广泛的兼容性。数据集涵盖了多种垃圾类别,包括塑料(如水瓶、购物袋等)、纸张和纸板(如报纸、纸箱等)、玻璃(如饮料瓶、食品罐等)、金属(如易拉罐、钢罐等)、有机垃圾(如食物残渣、咖啡渣等)和纺织品(如衣物、鞋子等)。该数据集可用于开发和训练自动垃圾分类的机器学习模型,分析不同垃圾材料的视觉特征,比较默认图像和真实场景图像上的分类算法性能,以及研究真实场景对垃圾识别准确率的影响。例如,研究人员可以利用该数据集训练深度学习模型,以提高垃圾分类的自动化水平。这个数据集为垃圾分类和回收的研究提供了丰富的资源,有助于推动相关技术的发展,促进可持续发展。
深度学习(图像模型):视觉植物病害检测的数据集
PlantDoc 是一个用于视觉植物病害检测的数据集,由印度理工学院(IIT)的研究团队于 2019 年开发并公开。该数据集旨在解决农业中植物疾病早期检测的挑战,通过计算机视觉技术帮助减少因病害导致的农作物损失。
数据集包含 2,598 个数据点,涵盖 13 种植物和多达 17 种病害类别。这些数据是通过从互联网上抓取图像,并经过约 300 小时的人工标注得到的。标注工作确保了图像的准确性和可靠性,使得基于该数据集训练的模型在植物病害分类任务中表现出色,分类准确率可提高高达 31%。
PlantDoc 数据集的构建背景是印度每年因植物病害损失约 35% 的作物产量,而实验室基础设施和专业知识的缺乏使得早期检测面临巨大挑战。该数据集的发布填补了大规模非实验室数据的空白,降低了计算机视觉技术在植物病害检测领域的应用门槛。
该数据集适用于多种计算机视觉任务,特别是植物病害的分类与检测。用户可以通过下载数据集并使用深度学习框架(如 TensorFlow 或 PyTorch)进行模型训练。数据集的开放获取方式,也促进了其在学术研究和实际应用中的广泛使用。
在实际应用中,PlantDoc 数据集支持开发智能农业系统,例如通过智能手机应用程序拍摄植物图像,系统通过分析图像识别疾病类型并提供治疗建议。这种应用不仅提高了疾病检测的效率,还减少了因疾病导致的农作物损失,对农业生产具有重要意义。
深度学习(图像模型):10,000个视频的数据集,主要用于研究和检测深度伪造(DeepFake)技术
该数据集包含大量真实和伪造的视频样本。这些视频被广泛用于训练和测试深度伪造检测模型,帮助研究人员和开发者更好地理解和识别深度伪造内容。视频数量丰富:数据集包含超过10,000个视频,涵盖了多种类型的深度伪造技术,如面部替换、表情替换等。多样化内容:视频内容丰富多样,包括不同的人物、场景和动作,能够满足多种研究需求。高质量视频:数据集中的视频具有较高的视觉质量,分辨率通常较高,这使得模型训练和检测更加准确。标注清晰:每个视频都被明确标注为真实或伪造,方便研究人员进行分类和分析。深度伪造检测研究:该数据集被广泛用于开发和测试深度伪造检测算法,帮助研究人员提高检测模型的准确性和鲁棒性。机器学习与人工智能:可用于训练卷积神经网络(CNN)和循环神经网络(RNN)等模型,以识别视频中的伪造特征。安全与隐私保护:通过研究深度伪造技术,可以更好地防范其被用于恶意目的,如虚假信息传播和隐私侵犯。数据预处理:在使用该数据集之前,通常需要进行预处理,如提取视频帧、裁剪和归一化等操作,以便更好地用于模型训练。
模型训练与测试:研究人员可以利用该数据集训练深度伪造检测模型,并通过测试集评估模型性能。
深度学习(图像模型):窃贼检测模型的数据集
数据集是一个用于训练和测试窃贼检测模型的数据集,由JanstyLewis7于2025年3月30日上传至Kaggle。该数据集包含2364张图片,涵盖8个类别,包括“汽车”“遮挡面部”“枪支”“人类”“匆忙的人类”“人类破坏门”“人类开锁/解锁”和“武器”等。这些图片均采用YOLOv8格式标注了边界框坐标,可用于目标检测任务。该数据集的设计灵感来源于现实世界的安防挑战,旨在帮助开发实时监控和安全应用中的盗窃检测系统。它适用于商店、自动取款机和公共场所等场景,能够作为自动化监控系统中的预警工具。数据集分为训练集、验证集和测试集,以支持机器学习模型的开发和评估,数据集的结构清晰,标注规范,采用的YOLO格式适合快速目标检测。其标注的类别涵盖了盗窃行为中可能出现的各种关键对象和行为特征,能够为相关研究和应用提供丰富的训练素材。该数据集还提供了与Roboflow的链接,方便用户进一步了解数据的来源和处理过程。
深度学习(图像模型):是一个专注于脑癌研究的医学影像数据集
数据集是一个专注于脑癌研究的医学影像数据集,由孟加拉国的多家医院提供,包含大量脑癌患者的磁共振成像(MRI)图像。该数据集由孟加拉国的阿赫桑努拉科技大学、美国国际大学孟加拉国分校以及日本会津大学的研究团队共同创建。数据集最初包含1600张原始MRI图像,经过数据增强处理后,扩展至6000张图像。这些图像被分为四个主要类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、垂体瘤(Pituitary)以及无肿瘤(No Tumor),每个类别各有1500张图像。高质量与标准化:所有图像均被调整为512×512像素的统一尺寸,以确保与各种图像处理和机器学习算法的兼容性。此外,图像数据的收集过程中有医学专家的参与,确保了数据的准确性和可靠性。多样性和现实性:数据集涵盖了多种脑癌类型,能够为研究人员提供多样化的样本,支持深度学习模型的训练和验证[^1^]。图像来源于孟加拉国的多家医院,具有广泛的代表性。支持可解释AI技术:结合了可解释人工智能(XAI)技术,如GradCAM、GradCAM++、ScoreCAM和LayerCAM,用于可视化模型决策的关键区域,增强了模型的透明度和可信度。为了增加数据集的规模和鲁棒性,该数据集采用了多种数据增强技术,包括随机旋转(45度范围内)、水平和垂直平移(图像宽度和高度的20%)、剪切变换(20%范围内)、缩放(20%范围内)以及水平翻转。这些技术有助于提高模型对不同图像变化的适应能力,从而提升模型的泛化性能。
深度学习(图像模型):用于乳腺超声图像研究的数据集
数据集是一个专门用于乳腺超声图像研究的数据集,由西班牙卡斯蒂利亚 - 拉曼恰大学(UCLM)和希洪综合大学医院合作创建。该数据集包含从 38 名患者处收集的 683 张乳腺超声图像,涵盖了正常、良性病变和恶性病变三种类型,其中正常图像 419 张,良性病变图像 174 张,恶性病变图像 90 张。
深度学习(图像模型):阿尔茨海默病分类研究的磁共振成像(MRI)数据集
该数据集来源于阿尔茨海默病神经影像学倡议(Alzheimer's Disease Neuroimaging Initiative,简称 ADNI)项目,这是一个旨在通过多模态数据(包括神经影像学、生物标志物和临床评估等)研究阿尔茨海默病及相关神经退行性疾病的大型研究项目。ADNI-4C 数据集由 Kaggle 用户 Abdullah Tauseef 重新上传并分享,以确保该数据集能够继续为相关研究提供支持。ADNI-4C 数据集包含用于阿尔茨海默病分类的脑部 MRI 扫描图像,这些图像被分为以下四个类别:阿尔茨海默病(Alzheimer's Disease,AD):包含 8960 张图像。认知正常(Cognitively Normal,CN):包含 6464 张图像。早期轻度认知障碍(Early Mild Cognitive Impairment,EMCI):包含 9600 张图像。晚期轻度认知障碍(Late Mild Cognitive Impairment,LMCI):包含 8960 张图像。这些图像涵盖了从认知正常到不同程度认知障碍以及阿尔茨海默病的各个阶段,为研究人员提供了丰富的数据资源,可用于开发和验证针对阿尔茨海默病及相关认知障碍的分类模型。多类别分类:数据集涵盖了从正常到不同程度认知障碍再到阿尔茨海默病的多个阶段,使得研究人员能够开发出能够识别不同认知状态的模型,有助于早期诊断和疾病进展监测。大规模数据:大量的 MRI 图像为深度学习模型的训练提供了充足的数据支持,有助于提高模型的准确性和泛化能力。研究与应用价值:该数据集可用于开发和验证各种机器学习和深度学习算法,以提高阿尔茨海默病的诊断准确性。此外,它还可以用于研究疾病进展的生物标志物以及探索新的治疗方法。
深度学习(图像模型):颈动脉超声图像的医学影像数据集
数据集是一个包含颈动脉超声图像的医学影像数据集,主要用于研究和开发颈动脉图像分割、测量以及疾病诊断算法。这些数据集通常用于支持相关的医学研究,例如评估计算机化测量系统在颈动脉内膜中层厚度(CIMT)测量中的性能。图像数量与来源:数据集通常包含数百张颈动脉超声图像。例如,一个数据集包含11名受试者的1100张图像,每名受试者的左右两侧颈动脉各采集了100张图像。这些图像使用Mindary UMT-500Plus超声设备和L13-3s线性探头采集。图像通常以PNG格式存储,分辨率为709×749×3。部分数据集还提供了DICOM格式的原始图像序列,并将其转换为PNG格式以便于处理。数据集还包括由专业技术人员制作并经专家验证的标注掩膜(masks),这些掩膜可用于图像分割任务,帮助算法学习颈动脉的边界和结构。医学研究与诊断:该数据集可用于研究颈动脉内膜中层厚度(CIMT)的测量方法,这对于评估心血管疾病风险具有重要意义。此外,它还可用于开发自动化的颈动脉血管壁分割算法,以减少手动分割的工作量并提高诊断效率。计算机视觉与深度学习:该数据集为计算机视觉和深度学习研究提供了宝贵的资源。例如,研究人员可以使用这些图像训练分割模型(如U-Net),以实现对颈动脉的自动分割和分析。多样性和复杂性:数据集中的图像涵盖了不同受试者的颈动脉,包括正常动脉和患有斑块或狭窄病变的动脉。这种多样性使得数据集能够支持多种研究场景。
高质量标注:数据集中的标注掩膜由经验丰富的技术人员制作,并经过专家验证,确保了标注的准确性和可靠性。
深度学习(图像模型):关于精子形态图像的数据集
该数据集是一个用于精子形态分析的图像数据集,由 Hamza O. Ilhan 等人创建。该数据集包含 3000 张精子图像,这些图像被分为三个类别:正常精子(normal)、异常精子(abnormal)和非精子。数据集中的图像采集自 17 名年龄在 19 至 39 岁之间的受试者。在采集过程中,精液样本经过改良的苏木精伊红染色法处理,以便更好地观察精子的各个部分,从而方便专家进行视觉分析。随后,研究人员使用基于智能手机的数据采集方法获取了这些图像。数据集主要用于精子形态分类的研究。通过机器学习和深度学习技术,研究人员可以利用该数据集开发自动化的精子形态分析系统。例如,研究人员曾使用小波特征与支持向量机(SVM)分类器在 SMIDS 的短版本上进行测试,分类准确率达到 82%;使用加速鲁棒特征(SURF)与 SVM 分类器则将准确率提高到 85%。数据集的特点:多样性:SMIDS 数据集涵盖了正常、异常和非精子的图像,为研究人员提供了丰富的样本。标注性:数据集中的图像经过手动标注,确保了数据的准确性和可靠性。实用性:该数据集不仅可用于精子形态分类的研究,还可用于开发辅助诊断男性不育症的工具。
深度学习(视觉模型):标注过的超声肝脏图像数据集
数据集是一个高质量的医学图像数据集,专为肝脏超声图像的研究而设计。该数据集包含735张肝脏超声图像,涵盖了正常肝脏和多种异常情况,如肝细胞癌(HCC)、肝囊肿、血管瘤等。这些图像由先进的超声设备采集,具有高分辨率和对比度,能够满足准确诊断的需求数据集的主要特点在于其精确的标注。标注工作由经验丰富的放射科医生完成,他们遵循严格的质量控制标准,确保了标注的准确性和可靠性。这种高质量的标注对于医学图像分析中的机器学习模型训练至关重要,可以帮助研究人员开发出更精确的分类和诊断算法。该数据集的创建旨在为医学图像分类任务提供一个全面且多样化的资源。它不仅适用于机器学习模型的开发和验证,还可以用于计算机辅助诊断系统的训练,帮助早期发现和诊断肝脏疾病。此外,它还可作为教育资源,用于培训医学专业人员和学生,提高他们对超声图像的解读能力和肝脏疾病的诊断水平。该数据集是一个极具价值的资源,为医学图像分析领域的研究和应用提供了坚实的基础。
机器学习(预测模型):农业一个灌溉机器数据集
这个数据集是一个关于灌溉机器的传感器数据集,它记录了安装在灌溉设备上的多个传感器的数值读数,旨在帮助研究人员和开发者分析灌溉系统的运行效率、监测设备性能,并开发智能灌溉管理的预测模型。数据以CSV格式存储,每行代表一个特定时间点的传感器数据记录,包含多个列,每列对应一个传感器的读数,例如“sensor_0”“sensor_1”“sensor_2”等,这些传感器捕捉了灌溉机器在运行过程中不同操作或环境参数的变化。
数据集包含2000行记录,24列数据,文件大小约为181.25 KB。每个传感器的值范围大约在0到11之间,这些数值反映了灌溉系统在不同条件下的运行状态。例如,某些传感器可能监测土壤湿度、温度、压力或其他与灌溉相关的参数,这些数据对于理解灌溉系统的效率和优化用水管理至关重要。
该数据集的潜在应用非常广泛。首先,它可用于预测性维护,通过分析传感器数据来检测灌溉设备中的异常情况,并提前预测可能出现的故障,从而减少停机时间和维修成本。其次,这些数据可以帮助优化用水,通过分析传感器读数来提高灌溉效率,减少水资源的浪费。此外,数据集还可以用于环境监测,例如评估土壤湿度、温度或压力的变化,以支持精准农业的发展。
对于研究人员和开发人员来说,这个数据集是一个宝贵的资源。它可以用于机器学习和人工智能模型的训练,例如聚类分析、异常检测、回归分析和预测建模等。通过这些技术,可以实现灌溉系统的实时控制和自动化决策,从而提高农业生产的可持续性和效率。总之,这个灌溉机器数据集为农业领域的数据分析和智能系统开发提供了一个实用且具有潜力的工具。
机器学习(预测模型):一个包含职员考试结果的数据集
“Clerk Exam result”数据集是关于职员考试结果的集合,它为研究职员招聘与选拔提供了丰富的数据资源。该数据集可能包含了众多考生的基本信息,如姓名、性别、年龄、学历等,这些信息有助于分析不同背景考生的考试表现差异。考试成绩是数据集的核心部分,它可能涵盖了笔试、面试等多个环节的分数,通过这些分数可以直观地看出考生在专业知识、综合能力等方面的掌握程度。此外,数据集还可能标注了考生是否通过考试,这为研究考试的选拔标准和通过率提供了依据。
从数据的来源来看,它可能是由某个或多个组织在进行职员招聘考试后整理而成,具有一定的权威性和实用性。通过对该数据集的分析,可以发现考试过程中存在的问题,比如某些题目的难度是否过高或过低,以及不同地区、不同岗位的考试难度是否均衡等。同时,它也能为后续的招聘考试提供参考,帮助优化考试流程和内容,提高招聘的科学性和有效性。
然而,需要注意的是,此类数据集可能涉及考生的隐私信息,因此在使用时必须严格遵守相关法律法规,确保数据的安全和合法使用。同时,由于考试内容和标准可能会随着时间、地区和岗位的不同而有所变化,因此在分析数据时也需要考虑到这些因素,避免得出片面或不准确的结论。
机器学习(AI模型): 1150 道 GATE与计算机科学与工程(CSE)考试题目的数据集
GATE Question Classification Dataset 是一个包含 1150 道 GATE(Graduate Aptitude Test in Engineering)计算机科学与工程(CSE)考试题目的数据集。这些题目是从过去 15 年的模拟试卷中收集而来,并经过人工标注分类,存储为 CSV 文件。数据集中的每个条目都包含题目的文本内容及其对应的分类标签。该数据集分为五个主题类别,分别是计算机网络(Computer Networks)、操作系统(Operating Systems)、数学(Mathematics)、通用能力(General Aptitude)以及编程与数据结构(Programming and Data Structures),每个类别包含 230 道题目。数据集的 CSV 文件中有两列:“Topic”和“Question”,“Topic”列记录题目的分类主题,“Question”列则是题目的文本内容,不包含选项和额外细节。数据集特点:专业性:数据集专注于 GATE CSE 考试,涵盖了计算机科学领域的核心知识点,对于研究该领域考试题目的特点和趋势具有重要价值。人工标注:题目分类由人工完成,保证了分类的准确性和可靠性,为基于该数据集的研究和应用提供了高质量的基础。结构清晰:以 CSV 格式存储,易于读取和处理,方便研究人员和开发者将其应用于机器学习、自然语言处理等领域的相关任务。应用场景
自然语言处理研究:可用于训练和测试问题分类模型,帮助计算机更好地理解自然语言中的问题类型,进而推动问答系统、智能辅导系统等领域的发展。
教育领域:为教育工作者提供了一个系统化的题库资源,可用于分析考试内容的分布,辅助教学内容的调整和优化,以及开发个性化的学习工具。
机器学习模型训练:作为监督学习任务中的训练数据,可用于构建和优化分类算法,提高模型对不同类
机器学习(图像识别):是一个用于研究醉酒与清醒状态下人体红外图像差异的数据集
是一个用于研究醉酒与清醒状态下人体红外图像差异的数据集,具有重要的科研和应用价值。以下是关于该数据集的详细介绍:该数据集由希腊帕特雷大学的Georgia Koukiou和Vassilis Anastassopoulos创建,最初是为了研究如何通过红外成像技术检测人体的醉酒状态。数据集中的图像采集自41名参与者,涵盖了他们在清醒状态以及饮酒后不同时间点的红外图像。数据集包含41名参与者的红外图像,每位参与者在四种不同状态下被拍摄:清醒状态(饮酒前)、饮酒后20分钟、饮酒后40分钟以及饮酒后1小时。每种状态下,参与者都会拍摄四种类型的图像,分别是正面面部、侧面面部、眼睛和手掌这些图像能够帮助研究人员分析人体在醉酒过程中不同部位的热辐射变化。数据集特点
多维度数据:数据集不仅涵盖了面部图像,还包括侧面、眼睛和手掌的图像,为研究人员提供了丰富的视角来分析醉酒状态对人体不同部位的影响。
时间序列变化:通过记录参与者在饮酒后不同时间点的图像,数据集能够反映醉酒状态随时间的动态变化,有助于研究醉酒过程中的生理变化。
红外成像技术的应用:红外成像能够捕捉到人体表面的温度分布,而醉酒状态会导致人体血液循环和体温分布的变化,因此该数据集为利用红外技术进行醉酒检测提供了基础。该数据集可用于多种研究和开发场景,例如:
机器学习与人工智能:研究人员可以利用这些图像训练分类器,以自动识别醉酒状态。已有研究通过卷积神经网络(CNN)等深度学习方法在该数据集上实现了较高的分类准确率。
交通安全:该数据集的研究成果可以应用于开发车载醉酒检测系统,帮助减少因醉酒驾驶导致的交通事故。
生物医学研究:通过分析醉酒状态下的热辐射变化,可以为研究酒精对人体生理的影响提供新的视角。
机器学习(预测模型):专注于 2024 年出现的漏洞(CVE)信息数据集
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景:
安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。
机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。
企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
机器学习(图像识别):据集专注于“人收集垃圾”这一特定场景图像数据集
是一个遵循COCO格式的目标检测数据集,于2025年3月30日发布在Kaggle上。该数据集专注于“人收集垃圾”这一特定场景,包含300张图像及对应的JSON格式标注文件,分为训练集(210张图像)、验证集(45张图像)和测试集(45张图像)。图像以JPEG/PNG格式存储,标注文件包含边界框等信息。为增强模型泛化能力,数据集经过了多种预处理和增强操作。图像被自动调整方向并缩放至640×640像素,同时采用水平翻转、裁剪(0%至5%)、-5°至+5°的旋转、-4%至+4%的饱和度调整、-10%至+10%的亮度调整、最多0.1%像素的噪声等技术进行增强,边界框也相应调整以保持标注一致性。该数据集可用于训练和评估目标检测模型,尤其适用于需要识别“人收集垃圾”场景的计算机视觉应用。
机器学习(预测模型):2020年至2025年期间人工智能(AI)、机器学习(ML)和数据科学领域的薪资与就业趋势
数据集由Samith Chimminiyan于2024年2月2日更新,旨在分析2020年至2025年期间人工智能(AI)、机器学习(ML)和数据科学领域的薪资与就业趋势。该数据集包含约3.4万条薪资记录,数据以美元为单位,并根据当年平均汇率将其他货币的薪资换算为美元。数据集的属性信息丰富,涵盖多个维度。其中包括工作年份(work_year)、工作经验水平(experience_level,分为初级、中级、高级和执行级)、雇佣类型(employment_type,如全职、兼职、合同工和自由职业)、职位名称(job_title)、薪资金额(salary)、薪资货币类型(salary_currency)、薪资换算为美元后的数值(salary_in_usd)、员工居住地(employee_residence)、远程工作比例(remote_ratio,分为无远程、部分远程和完全远程)以及公司所在地和公司规模(company_location和company_size)。该数据集的薪资数据每周更新一次,因此排名可能在一年内发生变化其来源包括AIJobs.net等网站,数据经过整理和分析后,能够为相关领域的从业者、求职者以及企业提供有价值的参考。通过分析该数据集,可以发现一些关键趋势。例如,2025年数据科学家的薪资显著增长,初级职位年薪可达15.2万美元,较2024年增长4万美元。此外,美国和欧洲的高级职位薪资最高,而印度和东南亚等新兴地区薪资则相对较低。远程工作比例对薪资也有影响,发达市场中完全远程工作的岗位薪资更高。
机器学习(预测模型):数据集是一个涵盖全球避孕套销售、避孕使用情况以及性健康意识的综合性数据集
数据集是一个涵盖全球避孕套销售、避孕使用情况以及性健康意识的综合性数据集。它收集了2015年至2025年期间多个国家的数据,包括经济因素、社会趋势、政府宣传活动以及基于性别的购买行为等多方面内容。该数据集提供了丰富的信息,例如各国的避孕套销售趋势、品牌偏好、政府宣传活动的影响以及在线购物习惯等。它还涵盖了避孕套的市场收入、总销售量、避孕使用率、艾滋病毒预防意识以及青少年怀孕率等关键数据[此外,数据集还分析了不同国家在有无政府宣传活动和性教育项目支持下的销售差异。数据集特点:时间跨度长:涵盖了2015年至2025年的十年数据,能够反映长期趋势。多维度分析:不仅关注销售数据,还结合了社会、经济和政策因素。国际视野:覆盖多个国家,提供了全球范围内的比较分析。该数据集可用于多种研究和分析场景:公共卫生研究:评估性教育和政府宣传活动对性健康意识和避孕套使用的影响。市场研究:帮助避孕套品牌了解市场需求、优化定价策略以及识别高需求地区。政策制定:为政策制定者提供数据支持,帮助其制定更有效的性健康教育和避孕套推广政策。
机器学习(预测模型):虚构的电子商务市场公司Fecom Inc.的订单数据集
是一个虚构的电子商务市场公司Fecom Inc.的订单数据集,该数据集托管在Kaggle平台上,为数据分析师和研究人员提供了丰富的电子商务交易数据,可用于多种分析和研究。其订单数据集包含了该公司在一定时间范围内的交易记录,这些数据反映了不同客户在平台上的购买行为、订单详情以及相关的产品信息等。数据集的构建旨在帮助研究人员和数据科学家深入分析电子商务市场的趋势、客户行为模式以及产品销售情况等。该数据集具有以下特点:数据丰富性:涵盖了订单、客户、产品等多个维度的信息,能够为全面的电子商务分析提供支持。应用场景广泛:可用于客户细分、市场篮子分析、销售趋势预测、客户流失分析等多种数据分析任务。数据质量较高:经过一定的数据清洗和整理,数据的准确性和一致性较好,适合用于实际的研究和分析。使用方法:数据预处理:包括数据清洗、缺失值处理、数据标准化等,以确保分析结果的可靠性。数据分析:利用统计分析、数据可视化等方法,探索数据中的模式和趋势。机器学习建模:构建预测模型,如销售预测、客户流失预测等,以支持决策制定。客户细分:通过聚类分析,将客户分为不同群体,针对不同群体制定个性化的营销策略。市场篮子分析:分析客户购买行为,发现产品之间的关联规则,优化产品推荐系统。销售趋势分析:通过时间序列分析,预测未来销售趋势,为库存管理和资源分配提供依据。
机器学习(预测模型):专为预测建模设计的二手车价格数据集
数据集是一个专为预测建模设计的二手车价格数据集,来源于Kaggle平台。该数据集提供了丰富的二手车价格及相关特征信息,能够帮助数据科学家和研究人员构建预测模型,以准确评估二手车的价值。数据集包含了多种车辆特征,如品牌、型号、车龄、行驶里程、燃油类型、变速箱类型等,这些特征全面覆盖了影响二手车价格的主要因素。此外,数据集中还可能包含一些匿名特征,这些特征经过脱敏处理,以保护数据的隐私性,同时仍保留了对价格预测有价值的信息。数据集的规模较大,涵盖了大量不同类型的二手车交易记录。这种大规模的数据为模型提供了丰富的训练样本,有助于提高预测的准确性和泛化能力。数据质量较高,经过初步清洗和整理,减少了缺失值和异常值对建模的影响,使得研究人员可以更专注于模型的构建和优化。该数据集在多个领域具有广泛的应用价值。对于二手车经销商来说,可以通过该数据集构建的预测模型,快速评估库存车辆的价值,从而制定合理的销售策略和定价方案。对于消费者而言,该模型可以帮助他们在购车前了解目标车型的大致价格范围,避免被过度定价。此外,该数据集也是数据科学爱好者和研究人员进行机器学习实践、特征工程和模型优化的优质资源。研究人员可以利用该数据集进行多种数据分析和建模工作。首先,通过对数据的探索性分析,可以了解不同特征与价格之间的关系,例如车龄与价格的负相关性、品牌对价格的显著影响等。然后,可以运用多种机器学习算法,如线性回归、决策树、随机森林等,构建预测模型。通过对模型的训练和验证,可以找到最适合该数据集的模型结构和参数,从而实现对二手车价格的准确预测。